• Title/Summary/Keyword: stormwater management

Search Result 152, Processing Time 0.029 seconds

Analysis of Storm Event Characteristics for Stormwater Best Management Practices Design (강우유출수 관리시설의 설계를 위한 강우사상 특성 분석)

  • Kim, Hak Kwan;Ji, Hyun Seo;Jang, Sun Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.73-80
    • /
    • 2017
  • The objective of this study is to investigate whether the daily rainfall depth derived from daily data represents the event rainfall depth derived from hourly data. For analysis, the 85th, 90th, and 95th percentile daily rainfall depths were first computed using daily rainfall data (1986~2015) collected at 63 weather stations. In addition, the storm event was separated by the interevent time definition (IETD) of 6, 12, 18, and 24 hr using hourly rainfall data. Based on the separated storm events, the 85th, 90th, and 95th percentile event rainfall depths were calculated and compared with the using hourly rainfall data with the 85th, 90th, and 95th percentile daily rainfall depths. The event rainfall depths computed using the IETD were greater than the daily rainfall depths. The difference between the event rainfall depth and the daily rainfall depth affects the design and size of the facility for controlling the stormwater. Therefore, the designer and policy decision-maker in designing the stormwater best management practices need to take into account the difference generated by the difference of the used rainfall data and the selected IETD.

Designing a Decentralized Stormwater Management Corridor for a Flood-Prone Watershed using Surface Runoff Analysis (지표유출수 분석을 통한 상습침수유역의 분산식 우수관리통로 설계)

  • Lee, Seul;Lee, Yumi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.13-26
    • /
    • 2015
  • Many urban areas in Korea suffer from repeated flood damage during intensive rainfall due to an increase in impervious areas caused by rapid urbanization and deteriorating sewage systems. A centralized stormwater management system has caused severe flood damage in an area that has proven unable to accommodate recent climate change and a rise in precipitation. Most flooding prevention projects that have been recently implemented focus on increasing drainage system capacity by expanding the size of sewer pipes and adding pumping stations in downstream areas. However, such measures fail to provide sustainable solutions since they cannot solve fundamental problems to reduce surface runoff caused by urbanization across the watershed. A decentralized stormwater management system is needed that can minimize surface runoff and maximize localized retention capacity, while maintaining the existing drainage systems. This study proposes a stormwater management corridor for the flood-prone watershed in the city of Dongducheon. The corridor would connect the upstream, midstream, and downstream zones using various methods for reducing stormwater runoff. The research analyzed surface runoff patterns generated across the watershed using the Modified Rational Method considering the natural topography, land cover, and soil characteristics of each sub-watershed, as well as the urban fabric and land use. The expected effects of the design were verified by the retainable volume of stormwater runoff as based on the design application. The results suggest that an open space network serve as an urban green infrastructure, potentially expanding the functional and scenic values of the landscape. This method is more sustainable and effective than an engineering-based one, and can be applied to sustainable planning and management in flood-prone urban areas.

A Study on the Development of Design Model of Ecological Park as Stormwater Storage Facilities (저류지 생태공원 설계모형 개발에 관한 연구)

  • Byeon, Wooil
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.3
    • /
    • pp.1-16
    • /
    • 2006
  • The purpose of this study is to develop design model of ecological park as stormwater storage facilities. The results are as follows : First, the design model of ecological park as stormwater storage facilities consider ecological and landscape characteristics such as high efficiency of land use, function as disaster prevention, ecological water purification, formation of habitat for flora and fauna. Second, this study demonstrates two types of plane structure and eight types of designed section. They can be combined and designed depending on conditions of each site. The facilities of stormwater storage conduct disaster prevention system and ecological park. Retention pond in stormwater storage facilities for ecological park also should be made for ecological restoration in the site. Third, the ecological park provide the basis for ecological network from in-site to out-site. Therefore its conservation and restoration plan consider the ecosystems of the site. Fourth, the most important factor for maintenance and management for retention pond is keeping water quality. Sustainable Structured wetland Biotop system is suggested for ecological water purification system in the retention pond which is one of the constructed wetland system using multi-celled aquatic plant and pond. This system can also provide habitat for animals and plants, water friendly park for men, and beautiful landscape.

Effects of Rain Gardens on Removal of Urban Non-point Source Pollutants under Experimental Conditions (실험실 조건에서 레인가든의 도시 비점오염물질 제거효과)

  • Kim, Changsoo;Sung, Kijune
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.676-685
    • /
    • 2012
  • As impermeable layer continues to increase with the urbanization process, direct input of nonpoint source pollutants into water bodies via stormwater has caused serious effects on the aquatic ecosystem. Potential applications of rain gardens are increasing not only as best management practices (BMP) for reducing the level of nonpoint source pollutants but also as an ecological engineering alternative for low impact development (LID). In this study, remediation performance of various planting types, such as a mixed planting system with shrubs and herbaceous plants, was assessed quantitatively to effectively manage stormwater and increase landscape applicability. The mixed planting system with Rhododendron lateritium and Zoysia japonica showed the highest removal performance of $76.9{\pm}7.6%$ and $58.4{\pm}5.0%$ for total nitrogen and $89.9{\pm}7.9%$ and $82.4{\pm}5.2%$ for total phosphorus at rainfall intensities of 2.5 mm/h and 5.0 mm/h, respectively. The mixed planting system also showed the highest removal performance for heavy metals. The results suggest that a rain garden with the mixed planting system has high potential applicability as a natural reduction system for nonpoint source pollutants in order to manage stormwater with low concentrations of pollutants and will increase water recycling in urban areas.

Factors affecting the infiltration rate and removal of suspended solids in gravel-filled stormwater management structures

  • Guerra, Heidi B.;Yuan, Qingke;Kim, Youngchul
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Apparent changes in the natural hydrologic cycle causing more frequent floods in urban areas and surface water quality impairment have led stormwater management solutions towards the use of green and sustainable practices that aims to replicate pre-urbanization hydrology. Among the widely documented applications are infiltration techniques that temporarily store rainfall runoff while promoting evapotranspiration, groundwater recharge through infiltration, and diffuse pollutant reduction. In this study, a laboratory-scale infiltration device was built to be able to observe and determine the factors affecting flow variations and corresponding solids removal through a series of experiments employing semi-synthetic stormwater runoff. Results reveal that runoff and solids reduction is greatly influenced by the infiltration capability of the underlying soil which is also affected by rainfall intensity and the available depth for water storage. For gravel-filled structures, a depth of at least 1 m and subsoil infiltration rates of not more than 200 mm/h are suggested for optimum volume reduction and pollutant removal. Moreover, it was found that the length of the structure is more critical than the depth for applications in low infiltration soils. These findings provide a contribution to existing guidelines and current understanding in design and applicability of infiltration systems.

Urban Stormwater Capture Curve using 3-Parameter Mixed Exponential Probability Density Function (3변수 혼합 지수 확률밀도함수를 이용한 도시 강우 유출수 포착곡선의 작성)

  • Han, Suhee;Park, Moo Jong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.430-435
    • /
    • 2008
  • In order to design Non-point source management, the aspect of statistical features of the entire precipitation data should be focused since non-point source discharge is driven by continuous rainfall runoffs. 3-parameter mixed exponential probability density function is used to establish urban stormwater capture curve instead of previous single-parameter exponential PDF. Then, recent 10-year data in Busan are applied to establish the curve. The result shows that 3-parameter mixed PDF gives better resolution.

Stormwater Runoff Characteristics of Non-point Source Pollutants according to Landuse of Urban Area (도시지역 토지이용에 따른 비점원 오염물질 유출특성)

  • Jeong, Dong-Hwan;Shin, Dongseok;Rhew, Doughee;Jung, Dongil
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.6
    • /
    • pp.525-532
    • /
    • 2007
  • In order to establish and implement the total maximum daily load (TMDL) management plan in Korea, it is necessary to set the source units and calculate discharge loads for non-point source pollutants such as BOD, COD, SS, TN and TP. This study analysed the corelation between stormwater runoff characteristics and event mean concentrations (EMCs) of non-point source pollutants. As the result of the corelation analysis, we knew that all the antecedent dry days (ADD) and the rainfall correlated lowly with non-point source pollutants in the urban areas such as resident area, industrial area, business area, road area and parking area. Therefore, it is necessary to get all samples from stormwater starting point to stormwater ending point and standardize the sampling method of stormwater in order to obtain more accurate EMCs for landuse.

A study on the classification of storages in urban area (도시지역 저류시설 분류체계 연구)

  • Ryu, Jaena;Oh, Jeill;Lee, Ho Ryeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.637-647
    • /
    • 2012
  • Recent series of flooding events in urban area has brought a growing concern on storage facilities as a major stormwater management method. The Korean Ministry of Environment has announced diverse plans to tackle the problem, including plans for multi-purpose storages which deal both the stormwater and wastewater. Even though storages can be categorized for different perspectives, classification of possible storages in urban area has not been throughly studied so far. This study investigated diverse references of urban storages and suggested systematic classifications on structural, functional and some other basis. Structural classification mainly concerns structural shape of facilities and includes (1)Cisterns & Rain barrels, (2)Forebays, (3)Dry basins, (4)Wet basins and (5)Constructed wetland. Those functions can be (1)flood prevention (2)water quality control and (3)reuse of stored water. Other criteria that categorize storages depend on (1)height, (2)location, (3)configuration, (4)depth, (5)site of the installation and (6)shape.

Effects of porous pavement on runoff reduction in Boguang subcatchment (투수성 포장도로 도입을 통한 보광배수유역 유출량 저감효과 검토)

  • Jung, Jiyun;Lee, Gunyoung;Ryu, Jaena;Ohe, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.251-259
    • /
    • 2013
  • Among various Green Infrastructure measures for urban stormwater management, effects of porous pavement were quantitatively examined in terms of hydrological cycle. Different scenarios for porous pavement were introduced on a SWMM model and the effects were compared and analysed using discharge hydrographs. Two types of pavements having different runoff coefficients (0.05 & 0.5) were introduced to cover different ratio of entire road areas (100 %, 77.5 % and 40.4 %) and these made up in total 6 different scenarios. Total runoff volume was reduced and peak flow was significantly decreased by applying the porous pavement. The highest reduction for total runoff was shown from S-6(covering area: 100 %, runoff coefficient: 0.05) as 19 % followed by S-5(covering area: 77.5 %, runoff coefficient: 0.05, 16 %), while that of S-2(covering area: 40.4 %, runoff coefficient: 0.05) and S-1(covering area: 40.4 %, runoff coefficient: 0.5) were the lowest with 8 % and 5 %. This proved that the application of porous pavement would improve urban hydrological cycle.

Low Impact Urban Development For Climate Change and Natural Disaster Prevention

  • Lee, Jung-Min;Jin, Kyu-Nam;Sim, Young-Jong;Kim, Hyo-Jin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.54-55
    • /
    • 2015
  • Increase of impervious areas due to expansion of housing area, commercial and business building of urban is resulting in property change of stormwater runoff. Also, rapid urbanization and heavy rain due to climate change lead to urban flood and debris flow damage. In 2010 and 2011, Seoul had experienced shocking flooding damages by heavy rain. All these have led to increased interest in applying LID and decentralized rainwater management as a means of urban hydrologic cycle restoration and Natural Disaster Prevention such as flooding and so on. Urban development is a cause of expansion of impervious area. It reduces infiltration of rain water and may increase runoff volume from storms. Low Impact Development (LID) methods is to mimic the predevelopment site hydrology by using site design techniques that store, infiltrate, evaporate, detain runoff, and reduction flooding. Use of these techniques helps to reduce off-site runoff and ensure adequate groundwater recharge. The contents of this paper include a hydrologic analysis on a site and an evaluation of flooding reduction effect of LID practice facilities planned on the site. The region of this Case study is LID Rainwater Management Demonstration District in A-new town and P-new town, Korea. LID Practice facilities were designed on the area of rainwater management demonstration district in new town. We performed analysis of reduction effect about flood discharge. SWMM5 has been developed as a model to analyze the hydrologic impacts of LID facilities. For this study, we used weather data for around 38 years from January 1973 to August 2014 collected from the new town City Observatory near the district. Using the weather data, we performed continuous simulation of urban runoff in order to analyze impacts on the Stream from the development of the district and the installation of LID facilities. This is a new approach to stormwater management system which is different from existing end-of-pipe type management system. We suggest that LID should be discussed as a efficient method of urban disasters and climate change control in future land use, sewer and stormwater management planning.

  • PDF