• Title/Summary/Keyword: stormwater

Search Result 350, Processing Time 0.022 seconds

An Experimental Study on the Analysis of Infiltration Capacity of the Permeable Block (투수성 보도블록의 침투능 분석에 관한 실험적 연구)

  • Lee, Hoon;Jung, Do-Joon;Kim, Young-Bok;Kim, Yun-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.99-106
    • /
    • 2009
  • This research was to estimate quantitative infiltration volume of permeable block which is one of runoff reduction infiltration facilities. In this research, the permeable block experiments estimating infiltration volume for 50, 100, 150, 200 mm/hr rainfall intensity were carried out and hydraulic experiments results were compared with numerical simulation output to produce feasibility of numerical simulation. Final infiltration capacity analysis of permeable block hydraulic experiments reveals that every estimated infiltration volume before runoff beginning was above approximately 300.0 l despite rapid reduction of infiltration ratio and runoff initiation time were occurred in every rainfall intensity. Statistical calculation for coefficient of determination based on cumulative infiltration volume of hydraulic experiment and numerical simulation resulted in a high correlationship as $0.958{\sim}0.996$.

Characteristics of Washed-off Pollutants from Railway Station During Storms (강우시 철로 역사에서 발생하는 비점오염물질의 유출 경향 및 특성)

  • Kim Lee-Hyung;Oa Sunguk;Lee Seonha
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.15-20
    • /
    • 2005
  • The ministry of Environment, Korea, are designing the TMDL(Total Maximum daily Load) program far 4 major large rivers to improve water quality from possible pollutants. It can be successfully performed as controling of nonpoint pollutants from watershed area. Railway stations are stormwater intensive land use because of high imperviousness and high pollutant mass emissions from various activities. Especially the metal pollutants from the railway station were recognized as an important pollutants because of its toxicities. In order to characterize the washed-off pollutants. the monitoring were performed on a railway station during storms. Pollutant concentrations are exponentially decreasing during the storm duration. The 95% confidence interval of pollutant concentrations in an hour storm duration ranges from 61.6 to 115.4mg/L for TSS(mean=88.50mg/L),103.8-244.1mg/L for COD(mean=174 mg/L) and 7.68-17.32mg/L for Oil & Grease(mean=12.5mg/L). The ranges of metals were 39.2-84.0 $\mu\textrm{g}$/L for total Cu(mean=61.6$\mu\textrm{g}$/L), 14.0-25.8$\mu\textrm{g}$/L for total Pb(mean=19.9$\mu\textrm{g}$/L) and 182.2-376.l $\mu\textrm{g}$/L for total Zn(mean=279.2$\mu\textrm{g}$/L). The first flush criteria for best management practices can be suggested to 50% pollutant mass emissions during 30% of the total flow.

Application of a Hydroinformatic System for Calibration of a Catchment Modelling System (강우-유출모형의 검정을 위한 수문정보시스템의 적용)

  • Choi, Kyung-Sook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.129-138
    • /
    • 2003
  • A new methodology for selecting spatially variable model control parameter values through consideration of inference models within a Hydroinformatic system has been developed to overcome problems associated with determination of spatially variable control parameter values for both ungauged and gauged catchment. The adopted Hydroinformatic tools for determination of control parameter values were a GIS(Arc/Info) to handle spatial and non-spatial attribute information, the SWMM(stormwater management model) to simulate catchment response to hydrologic events, and lastly, L_BFGS_B(a limited memory quasi-Newton algorithm) to assist in the calibration process. As a result, high accuracy of control parameter estimation was obtained by considering the spatial variations of the control parameters based on landuse characteristics. Also, considerable time and effort necessary for estimating a large number of control parameters were reduced from the new calibration approach.

  • PDF

Evaluation of Inland Inundation Risk in Urban Area using Fuzzy AHP (Fuzzy AHP 기법을 이용한 도시지역의 내수침수위험도 평가)

  • Shin, Ji Yae;Park, Yei Jun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.789-799
    • /
    • 2014
  • This study presented how to evaluate the inland inundation risk considering the characteristics of inland flood. Fuzzy AHP (Analytic Hierarchy Process), which can deal with the uncertainty or ambiguousness of the decision-making process, was used to estimate the inundation risk. The criteria used for inland inundation risk include the physical index, social index and inland flood. Each index contains three detailed indicators then total nine indicators were employed in this study. The inundation risk evaluation was carried out for each node (manhole) within the drainage system, not to the administrative extent, which enabled us to point out nodes with high risk. The proposed Fuzzy AHP was applied to Geoje district in Busan. The results indicated that the junction of Oncheoncheon and Geojecheon has high risk which is consistent with the fact that this junction has already experienced floods in the past. The proposed method can be used for evaluating inland inundation risk and preparing flood prevention plans in inland flood-prone urban areas.

Characteristics of NPS Pollutants and Treatment of Stormwater Runoff in Paved Area during a Storm (강우시 포장지역의 비점오염물질 유출 및 저감특성)

  • Son, Hyun-Geun;Lee, So-Young;Maniquiz, Marla C.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.55-66
    • /
    • 2009
  • The increase of pollutant loadings from nonpoint sources affect the water quality of the major rivers in Korea. Consequently, the need for managing the nonpoint source (NPS) pollution becomes the main concern of the Korean Ministry of Environment (MOE). Recently, the policy was changed from pollutant concentration-restricting approach to the total maximum daily load (TMDL) approach to improve the water quality and protect the aquatic ecosystem. Part of the program is the construction of Best Management Practice (BMP) pilot facilities basically to control NPS. Most of the BMPs adopted were foreign technologies which could not be properly employed in the country due to some limitations such as climate, watershed characteristics, etc. In other words, to be able to apply the BMPs, research on its applicability is necessary. In this study, a three-year monitoring has been conducted to assess the treatment performance of the BMP installed in highway toll plaza and parking lot. The data gathered aid in the characterization of NPS pollutants in runoff and estimation of the pollutant removal efficiency of the BMP. The results will be used for the future implementation of BMP in different land uses as well as for the determination of optimum operation and maintenance.

  • PDF

Analysis of Non-point Pollution Source Reduction by Permeable Pavement (투수성 포장에 의한 비점오염원 저감 효과 분석)

  • Koo, Young Min;Kim, Young Do;Park, Jae Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.49-62
    • /
    • 2014
  • As the Urban area grows and more land is developed both within the city and in surrounding areas, hydrologic functions of the natural water cycle are altered. Urbanization creates impervious areas that negatively impact stormwater runoff characteristics. these changes to the natural hydrologic cycle result in the increased flooding, decreased groundwater recharge, increased urban heat island effects. Finally, the land use and other activities result in accumulation and washoff of pollutants from surface, resulting in water quality degradation. Therefore, in this study, evaluating and quantitative analysis of the percolation effect through infiltration experiment of permeable pavement, which is one of the ways that can reduce the problem of the dry stream. Also the SWMM model is used to study the effect of the hydrologic cycle for permeable pavement block contribution.

An Hybrid Approach for Designing Detention and Infiltration-based Retentions to Promote Sound Urban Hydrologic Cycle (도시 물 순환 건전성을 위한 유수지와 침투기반 저류지의 복합설계기법)

  • Choi, Chi-Hyun;Choi, Dae-Gyu;Lee, Jae-Kwan;Kim, Sang-Dan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • This article proposes a hybrid approach involved in determining the size of stormwater control facilities as part of a very large scale urban retrofit project. The objective of the proposed hybrid approach is to restore the pre-development hydrologic cycle. Firstly, an appropriate IETD is determined to isolate single storm events from the continuous rainfall record. Then, using the NRCS-CN method, direct runoff and infiltration volume are computed for every storm events. Long-term statistics of direct runoff and infiltration volume are analyzed in each case of pre-development, post development, post development with detention only, and post-development with the proposed hybrid approach. In order to preserve long-term statistics of direct runoff and infiltration volume in the case of pre-development, the size of detention and infiltration-based retention are estimated using the genetic algorithm. The result shows that the proposed hybrid approach is very useful for restoring statistics of natural direct runoff and infiltration volume.

Removal Mechanisms for Water Pollutant in Constructed Wetlands: Review Paper (인공습지에서 오염물질 제거기작 및 국내외 연구동향)

  • Ko, Dae-Hyun;Chung, Yun-Chul;Seo, Seong-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.379-392
    • /
    • 2010
  • In these days, constructed wetlands are applied in Korea for various purposes ; post-treatment of effluent in wastewater treatment, management of stormwater and restoration of aquatic ecosystems. However, the removal mechanisms for water pollutant in constructed wetlands are not clearly understood because they are affected by climate, influent characteristics and local constraints. Therefore, this paper is focused on the process that the pollutant, especially nitrogen and phosphorus, of the wetland is removed by. In this study, the main nitrogen removal is performed by nitrification/denitrification mechanism in the rhizosphere of constructed wetlands. And the majority of the phosphorus is removed by adsorption on the substrate of wetland. However the fate of phosphorus in wetlands can be diverse depending on the Oxidation Reduction Potential(ORP), adsorption/desorption, precipitation/dissolution, microbial effect, etc.

Comparison of Optimization Techniques in Cost Design of Stormwater Drainage Systems (우수관망 시스템 설계에 있어서의 최적화기법의 비교)

  • Kim, Myoung-Su;Lee, Chang-Yong;Kim, Tae-Jin;Lee, Jung-Ho;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.2 s.21
    • /
    • pp.51-60
    • /
    • 2006
  • The objective of this research is to develop a least cost system design method for branched storm sewer systems while satisfying all the design constraints using heuristic techniques such as genetic algorithm and harmony search. Two sewer system models have been developed in this study. The SEWERGA and SEWERHS both determine the optimal discrete pipe installation depths as decision variables. Two models also determine the optimal diameter of sewer pipes using the discrete installation depths of the pipes while satisfying the discharge and velocity requirement constraints at each pipe. Two models are applied to the example that was originally solved by Mays and Yen (1975) using their dynamic programming(DP). The optimal costs obtained from SEWERGA and SEWERHS are about 4% lower than that of the DP approach.

Evaluating pollution origins of runoff in urban area by stormwater (강우시 도시지역 강우 유출수 오염부하 기원평가)

  • Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.930-934
    • /
    • 2006
  • In this study, we conducted water-quality analysis of wastewater and in-situ flow measurement using automatic flow rate measuring instrument to identify characteristics of wastewater in urban areas, and collected samples in gutter fur storm water drain, rainfall bucket, and aqueduct of pipe from roof, and outfalls of basins to examine the contribution by pollution origins such as base wastewater, atmospheric washing, runoff by roof surface, runoff by road surface, erosion of sewer sediment. In the result, the concentration of pollutants reached peak in the beginning of rainfall due to first flush, was 3 to 10 times higher than average concentration of dry period, and was lower than that of dry period due to dilution of storm water. In the analysis of the contribution by pollution origins, the ratio of load by sewer sediment resuspension to the total pollution load was 54.6% fer COD, and 73.3% fur SS. Accordingly, we can reduce the total pollutant load by periodical dredging and washing of sewer sediment, and control the loadings by overflow of combined sewer overflows.

  • PDF