우수관망 시스템 설계에 있어서의 최적화기법의 비교

Comparison of Optimization Techniques in Cost Design of Stormwater Drainage Systems

  • 김명수 (남원건설엔지니어링 수자원부) ;
  • 이창용 (한국건설기술연구원) ;
  • 김태진 (Taxas A&M University 토목공학과) ;
  • 이정호 (고려대학교 사회환경시스템공학과) ;
  • 김중훈 (고려대학교 사회환경시스템공학과)
  • 발행 : 2006.06.30

초록

본 연구의 목적은 유전자 알고리즘(Genetic Algorithm), 음정탐색법(Harmony Search)과 같은 발견적 방법과 동적계획법과 같은 최적화 기법들이 분기형 우수관망시스템의 최적비용 설계법에 적용됨에 있어 효율성을 비교하는데 있다. 이 목적에 맞추어 본 연구에서는 두 개의 우수관거 설계모형을 개발하였다.. 하나는 SEWERGA이고 다른 하나는 SEWERHS로서 각각의 모형은 결정변수로 최적의 파이프 매설깊이를 채택하였다. 이 두 모형은 유량과 유속의 제약조건을 만족시키는 가운데 파이프의 적절한 매설깊이에 따른 최적관경도 결정한다. 이 두 모델을 1975년 동적계획법(Dynamic Programming)을 이용하여 Mays와 Yen에 의해 계산된 예제에 적용하였다. SEWERGA와 SEWERHS에 의해 계산된 결과는 동적계획법에 의한 연구결과보다 약 4%의 비용 절감 효과가 있는 것으로 나타났다.

The objective of this research is to develop a least cost system design method for branched storm sewer systems while satisfying all the design constraints using heuristic techniques such as genetic algorithm and harmony search. Two sewer system models have been developed in this study. The SEWERGA and SEWERHS both determine the optimal discrete pipe installation depths as decision variables. Two models also determine the optimal diameter of sewer pipes using the discrete installation depths of the pipes while satisfying the discharge and velocity requirement constraints at each pipe. Two models are applied to the example that was originally solved by Mays and Yen (1975) using their dynamic programming(DP). The optimal costs obtained from SEWERGA and SEWERHS are about 4% lower than that of the DP approach.

키워드

참고문헌

  1. 백경록 (2000). Harmony Search를 이 용한 가물막 이 댐 가배수관의 최적설계, 대한토목학회논문집, 대한토목학회, Vol. 21, No.2, pp. 161-164
  2. Brown, K. G. and Koussis, A. D. (1987). Lotus Spreadsheet Desing for Storm Drain Networks, J. of Computing in Civil Engineering, ASCE, Vol. 1, No.3, pp. 197-213 https://doi.org/10.1061/(ASCE)0887-3801(1987)1:3(197)
  3. Charalambous, C. and Eliman, A. A. (1990). Heuristic Design of Sewer Networks, J of Water Resources Planning and Management, ASCE, Vol. 114, No.1, pp, 75-92
  4. Frolse, S. and Burges, S. G. (1978). Least-Cost Design of Urban-Drainage Networks, J of Water Resources Planning and Management, ASCE, Vol. 114, No.1, pp. 75-92
  5. Geem, Z. W. (2000). Optimal Design of Water Distribution Networks using Harmony search, ph.D. dissertation, Korea University
  6. Geem, Z. W., Kim, J. H., and Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm : Harmony Search. SIMULATION, Vol. 76
  7. Goldberg, D. (1989). Genetic Algorithms in Search, Optimezetion and Machine Learning, Addison-Welsley, Reading, MA
  8. Green, R., Agebenowosi, N. and Loganathan, G. V. (1999). Gis-Based Approach to Sewer System Design, J of Surveying Engineering, ASCE, Vol. 125, No.1, pp. 36-57 https://doi.org/10.1061/(ASCE)0733-9453(1999)125:1(36)
  9. Kuo, J.T., Yen. B. C., and Hwang, G. P (1991). Optimal Design of For Storm System with Pumping Stations, J of Water Resources Planning and Management, ASCE, Vol. 117, No.1, pp. 11-27 https://doi.org/10.1061/(ASCE)0733-9496(1991)117:1(11)
  10. Li, G. and Matthew, R. G. S. (1990). New Approach for Optimization of Urban Drainage Systems, J of Environmental Engineering, ASCE, Vol. 116, NO.5, pp. 927-944 https://doi.org/10.1061/(ASCE)0733-9372(1990)116:5(927)
  11. Mays. W. L and Yen, B. C. (1975). Optimal Design of Branched Sewer Systems, Water Resources Research, AGU. Vol. 11, No.1, pp. 37-47 https://doi.org/10.1029/WR011i001p00037
  12. Mays. W. L and Wenzel, H. G. (1976). Optimal Design of Multilevel Branching Sewer Systems, Water Resources Research, AGU. Vol. 12, No.5, pp. 913-917 https://doi.org/10.1029/WR012i005p00913
  13. Meredith, D. D. (1971). Dynamic Programming with Case study on Planning and Design of Urban Water Facilities, Trastise on Urban Water System, Colorado State Univ., Fort Collins, Colo., pp. 37-47
  14. Miles, W. S. and Heaney, J. P. (1988). Better Than "Optimal" Method for Designing Drainage Systems, J of Water Resources Planning and Management, ASCE, Vol. 114, No.5, pp. 477-499 https://doi.org/10.1061/(ASCE)0733-9496(1988)114:5(477)
  15. Paik, K. R. (2001). Development of Seasonal Tank Model and Comparison of Optimization Algorithms for Parameter Calibration, Master Thesis, Korea University
  16. S. Yagi and S. Shiba (1999). Application of Genetic Algorithm and Fuzzy Control to a Combined Sewer Pumping Station, Water Science and Technology, Vol. 39 ,Issue 9, pp.217-224
  17. Rauch W. and Harrenoes P (1999). Genetic Algorithms in Real Time Control Applied to Minimize Transient Pollution from Urban Wastewater Systems, Water Research, ASCE, Vol. 33, issue 5, pp. 1265-1277 https://doi.org/10.1016/S0043-1354(98)00304-2