• 제목/요약/키워드: storm waves

검색결과 113건 처리시간 0.028초

태풍 기상장의 신뢰도 분석: 태풍 매미(0314) (Analysis of Reliability of Weather Fields for Typhoon Maemi (0314))

  • 윤성범;정원무;조명환;류경호
    • 한국해안·해양공학회논문집
    • /
    • 제32권5호
    • /
    • pp.351-362
    • /
    • 2020
  • 2003년 남해안에 내습한 태풍 매미에 의해 발생한 폭풍해일과 파랑을 JMA-MSM 예보기상자료, NCEP-CFSR 재분석 기상자료, ECMWF-ERA5 재분석 기상자료, JTWC의 최적경로를 이용한 기상자료를 이용하여 수치모의하고, 계산된 해일고를 전국 해안의 항만에서 관측된 폭풍해일 시계열 자료와 비교하였다. 폭풍해일과 동시에 발생하는 파랑에 대해서는 계산된 유의파고를 관측 자료와 비교하였다. 이 비교를 통해 태풍 매미에 대한 각종 기상장의 신뢰도를 평가하였다. 그 결과 JMA-MSM 기상자료가 가장 신뢰도가 높았고, JTWC의 최적경로를 이용한 기상자료도 상당히 우수하게 나타났다. ECMWF-ERA5 기상자료는 전반적으로 해일고나 파고의 크기가 작게 나타났으며, NCEP-CFSR 기상자료는 태풍 매미의 특정 경우에 대해 신뢰도가 가장 낮게 나타났다. 이 연구를 통하여 폭풍해일과 파랑을 추산하기 위해 신뢰도 높은 기상장이 필수적임을 알 수 있었다.

잠제의 해빈침식 방지 기능에 관한 수치적 연구 (Numerical Analysis on the Beach Erosion Prevention Capability of Submerged Breakwaters)

  • 김인철;윤종성
    • 한국환경과학회지
    • /
    • 제15권9호
    • /
    • pp.881-886
    • /
    • 2006
  • The purpose of this research is to examine the beach erosion prevention capability of submerged breakwaters under wave energy condition. To accomplish this objective, the computational domain was divided into two do-mains : the large and the detailed domain for the Song-Do beach. For each computational domain, numerical models for calculating transformation, wave induced current and beach erosion were used and also these numerical models were carefully applied to three experimental cases such as 1) the present beach condition, 2) the condition for which submerged breakwaters are installed about 240m from the shoreline of beach enlarged by artificial nourishments. The results of this research show that if storm waves attack the present beach, the erosion occurs widely all over the beach. However, when the submerged breakwaters are installed in addition to the artificial nourishments, storm waves can be adequately controlled and strong wave induced currents occur only around the submerged breakwaters resulting in the beach evolution appearing locally only at the western end of the beach.

속초연안에서 대기순환의 특성 (Characteristics of Atmospheric Circulation in Sokcho Coast)

  • 최효
    • 한국환경과학회지
    • /
    • 제14권1호
    • /
    • pp.41-51
    • /
    • 2005
  • Using three-dimensional non-hydrostatical numerical model with one way double nesting technique, atmo­spheric circulation in the mountainous coastal region in summer was investigated from August 13 through 15, 1995. During the day, synoptic westerly wind blows over Mt. Mishrung in the west of a coastal city, Sokcho toward the East Sea, while simultaneously, easterly upslope wind combined with both valley wind from plain (coast) toward mountain and sea-breeze from sea toward inland coast blows toward the top of the mountain. Two different directional wind systems confront each other in the mid of eastern slope of the mountain and the upslope wind goes up to the height over 2 km, becoming an easterly return flow in the upper level over the sea and making sea-breeze front with two kinds of sea-breeze circulations of a small one in the coast and a large one in the open sea. Convective boundary layer is developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west and a thickness of thermal internal boundary layer from the coast along the eastern slope of the mountain is only confined to less than 200 m. On the other hand, after sunset, no prohibition of upslope wind generated during the day and downward wind combined with mountain wind from mountain towardplain and land-breeze from land toward under nocturnal radiative cooling of the ground surfaces should intensify westerly downslope wind, resulting in the formation of wind storm. As the wind storm moving down along the eastern slop causes the development of internal gravity waves with hydraulic jump motion in the coast, bounding up toward the upper level of the coastal sea, atmospheric circulation with both onshore and offshore winds like sea-breeze circulation forms in the coastal sea within 70 km until midnight and after that, westerly wind prevails in the coast and open seas.

기상청 현업 예보 바람자료를 이용한 동해안 동계 파랑 예측 재현도 연구 (A Study on the Predictability of Eastern Winter Storm Waves Using Operational Wind Forecasts of KMA)

  • 도기덕;김진아
    • 한국해안·해양공학회논문집
    • /
    • 제30권5호
    • /
    • pp.223-233
    • /
    • 2018
  • 본 연구에서는 동해안의 너울성 고파랑 예측하기 위해 기상청 현업 예보 바람자료를 입력장으로 하여 파랑수치모델(SWAN)을 수립 및 최적화하고 동해안 동계 파랑의 예측 재현도를 평가하였다. 파랑 모델은 연안역에서의 파랑 변형을 모의하기 위해 네스팅 기법을 적용하였으며, 백파 에너지 소산항을 개선하여 너울성 파랑을 모의하였다. 수치실험을 위한 입력 바람장으로는 기상청 현업 기상예보모델인 RDAPS 및 LDAPS 자료를 사용하였다. 모의된 파랑에 대한 정확도 비교 평가를 위해 ECMWF 재분석 바람자료와 KIOST 운용해양시스템의 WRF 예측 바람자료를 이용한 파랑모델링 및 기상청 현업 파랑예보모델 결과와 연안 및 외해 4개 관측정점의 파랑 관측자료를 이용하였다. 기상청 현업 기상예보모델을 입력바람장으로 이용한 경우 연안에서는 유의파고, 첨두주기 및 평균 파향이 모두 가장 낮은 RMSE와 가장 높은 상관계수를 가졌으며, 외해에서는 모든 수치실험 결과가 관측자료와 전반적으로 잘 일치하였다. 백파항을 수정한 SWAN 모델과 기상청 현업 기상예보모델을 사용할 경우 급격하게 발생하는 고파랑 재현은 개선이 필요하지만 비교적 겨울철 폭풍파를 잘 재현하고 있다.

Detection algorithm of ionospheric delay anomaly based on multi-reference stations for ionospheric scintillation

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun;Shin, Mi-Young
    • 한국항해항만학회지
    • /
    • 제35권9호
    • /
    • pp.701-706
    • /
    • 2011
  • Radio waves including GPS signals, various TV communications, and radio broadcasting can be disturbed by a strong solar storm, which may occur due to solar flares and produce an ionospheric delay anomaly in the ionosphere according to the change of total electron content. Electron density irregularities can cause deep signal fading, frequently known as ionospheric scintillation, which can result in the positioning error using GPS signal. This paper proposes a detection algorithm for the ionosphere delay anomaly during a solar storm by using multi-reference stations. Different TEC grid which has irregular electron density was applied above one reference station. Then the ionospheric delay in zenith direction applied different TEC will show comparatively large ionospheric zenith delay due to the electron irregularity. The ionospheric slant delay applied an elevation angle at reference station was analyzed to detect the ionospheric delay anomaly that can result in positioning error. A simulation test was implemented and a proposed detection algorithm using data logged by four reference stations was applied to detect the ionospheric delay anomaly compared to a criterion.

Statistical Analysis of Pc1 Pulsations Observed by a BOH Magnetometer

  • Kim, Jiwoo;Hwang, Junga;Kim, Hyangpyo;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권1호
    • /
    • pp.19-27
    • /
    • 2020
  • Pc1 pulsations are important to consider for the interpretation of wave-particle interactions in the Earth's magnetosphere. In fact, the wave properties of these pulsations change dynamically when they propagate from the source region in the space to the ground. A detailed study of the wave features can help understanding their time evolution mechanisms. In this study, we statistically analyzed Pc1 pulsations observed by a Bohyunsan (BOH) magneto-impedance (MI) sensor located in Korea (L = 1.3) for ~one solar cycle (November 2009-August 2018). In particular, we investigated the temporal occurrence ratio of Pc1 pulsations (considering seasonal, diurnal, and annual variations in the solar cycle), their wave properties (e.g., duration, peak frequency, and bandwidth), and their relationship with geomagnetic activities by considering the Kp and Dst indices in correspondence of the Pc1 pulsation events. We found that the Pc1 waves frequently occurred in March in the dawn (1-3 magnetic local time (MLT)) sector, during the declining phase of the solar cycle. They generally continued for 2-5 minutes, reaching a peak frequency of ~0.9 Hz. Finally, most of the pulsations have strong dependence on the geomagnetic storm and observed during the early recovery phase of the geomagnetic storm.

해안선 종단방향에서 소상파의 수동학적 거동 예측모형의 개발 (A Model Development for Swash Hydrodynamics Across the Shore)

  • 황규남;조용식
    • 한국수자원학회논문집
    • /
    • 제35권1호
    • /
    • pp.13-24
    • /
    • 2002
  • 본 연구에서는 역학적으로 실질적이면서도 단순화된 방법으로 폭풍과 같은 악후시에 임의의 해안단면에서 발생하는 소상파의 수동학적 거동에 대한 예측모델을 개발하고자 한다. 실제 크기의 폭풍과 조건하에서 사구의 침식을 모의하기 위해 수행된 대형조파수조 실험에서 계측된 실험자료가 모델 개발을 위해서 활용된다. 일반적으로 본 모델은 해안종단방향에서의 소상파의 파고, 속도 및 주기의 변화를 예측할수 있음을 보인다. 정량적으로 보다 나은 소상파 변수들에 대한 예측은 유의 소상파고가 영이 되는 해빈면의 높이, ymax에 대한 예측향상을 통하여 이루어질수 있다.

Field Observation and Quasi-3D Numerical Modeling of Coastal Hydrodynamic Response to Submerged Structures

  • Yejin Hwang;Kideok Do;Inho Kim;Sungyeol Chang
    • 한국해양공학회지
    • /
    • 제37권2호
    • /
    • pp.68-79
    • /
    • 2023
  • Even though submerged breakwater reduces incident wave energy, it redistributes the coastal area's wave-induced current, sediment transport, and morphological change. This study examines the coastal hydrodynamics and the morphological response of a wave-dominated beach with submerged breakwaters installed through field observation and quasi-3D numerical modeling. The pre-and post-storm bathymetry, water level, and offshore wave under storm forcing were collected in Bongpo Beach on the East coast of Korea and used to analyze the coastal hydrodynamic response. Four vertically equidistant layers were used in the numerical simulation, and the wave-induced current was examined using quasi-3D numerical modeling. The shore normal incident wave (east-northeast) generated strong cross-shore and longshore currents toward the hinterland of the submerged breakwater. However, the oblique incident wave (east-southeast) induced the southeastward longshore current and the sedimentation in the northeast area of the beach. The results suggested that the incident wave direction is a significant factor in determining the current and sediment transport patterns in the presence of the submerged breakwaters. Moreover, the quasi-3D numerical modeling is more appropriate for estimating the wave transformation, current, and sediment transport pattern in the coastal area with the submerged breakwater.

Location Tracking of Drifting Container by Solitary Wave Load Using a Motion Analysis Program

  • Taegeon Hwang;Jiwon Kim;Dong-Ha Lee;Jae-Cheol Lee
    • 한국해양공학회지
    • /
    • 제37권4호
    • /
    • pp.158-163
    • /
    • 2023
  • Objects adrift can cause considerable damage to coastal infrastructure and property during tsunami and storm surge events. Despite the potential for harm, the drifting behavior of these objects remains poorly understood, thereby hindering effective prediction and mitigation of collision damage. To address this gap, this study employed a motion analysis program to track a drifting container's location using images from an existing laboratory experiment. The container's trajectory and velocity were calculated based on the positions of five markers strategically placed at its four corners and center. Our findings indicate that the container's maximum drift velocity and distance are directly influenced by the scale of the solitary wave and inversely related to the container's weight. Specifically, heavier containers are less likely to be displaced by solitary waves, while larger waves can damage coastal structures more. This study offers new insights into container drift behavior induced by solitary waves, with implications for enhancing coastal infrastructure design and devising mitigation strategies to minimize the risk of collision damage.