• Title/Summary/Keyword: storm peak

Search Result 173, Processing Time 0.026 seconds

Application of a Penalty Function to Improve Performance of an Automatic Calibration for a Watershed Runoff Event Simulation Model (홍수유출 모형 자동 보정의 벌칙함수를 이용한 기능 향상 연구)

  • Kang, Taeuk;Lee, Sangho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.12
    • /
    • pp.1213-1226
    • /
    • 2012
  • Evolutionary algorithms, which are frequently used in an automatic calibration of watershed runoff simulation models, are unconstrained optimization algorithms. An additional method is required to impose constraints on those algorithms. The purpose of the study is to modify the SCE-UA (shuffled complex evolution-University of Arizona) to impose constraints by a penalty function and to improve performance of the automatic calibration module of the SWMM (storm water management model) linked with the SCE-UA. As indicators related to peak flow are important in watershed runoff event simulation, error of peak flow and error of peak flow occurrence time are selected to set up constraints. The automatic calibration module including the constraints was applied to the Milyang Dam Basin and the Guro 1 Pumping Station Basin. The automatic calibration results were compared with the results calibrated by an automatic calibration without the constraints. Error of peak flow and error of peak flow occurrence time were greatly improved and the original objective function value is not highly violated in the automatic calibration including the constraints. The automatic calibration model with constraints was also verified, and the results was excellent. In conclusion, the performance of the automatic calibration module for watershed runoff event simulation was improved by application of the penalty function to impose constraints.

Assessment of AnnAGNPS Model in Prediction of a Rainfall-Runoff Relationship (AnnAGNPS 모형의 강우-유출해석력 평가)

  • Choi, Kyung-Sook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.125-135
    • /
    • 2005
  • Generation and transport of nonpoint source pollution, especially sediment-associated pollutants, are profoundly influenced by hydrologic features of runoff. In order to identify pollutant export rates, hence, clear knowledge of rainfall-runoff relationship is a pre-requisition. In this study, performance of AnnAGNPS model was assessed based on the ability of the model to predict rainfall-runoff relationship. Three catchments, each under different nearly single land use, were simulated. From the results, it was found that the model was likely to produce better predictions for larger catchments than smaller catchments. Because of using the daily time scale, the model could not account for short durations less than 24 hours, especially high intensity events with multiple peak flow that significantly contribute to the generation and transport of pollutants. Since CN information for regional areas has not been built up, a careful selection of CN is needed to achieve accurate prediction of runoff volume. Storm distribution also found to be considered as an important calibration parameter for the hydrologic simulation.

  • PDF

Application of Urban Stream Discharge Simulation Using Short-term Rainfall Forecast (단기 강우예측 정보를 이용한 도시하천 유출모의 적용)

  • Yhang, Yoo Bin;Lim, Chang Mook;Yoon, Sun Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • In this study, we developed real-time urban stream discharge forecasting model using short-term rainfall forecasts data simulated by a regional climate model (RCM). The National Centers for Environmental Prediction (NCEP) Climate Forecasting System (CFS) data was used as a boundary condition for the RCM, namely the Global/Regional Integrated Model System(GRIMs)-Regional Model Program (RMP). In addition, we make ensemble (ESB) forecast with different lead time from 1-day to 3-day and its accuracy was validated through temporal correlation coefficient (TCC). The simulated rainfall is compared to observed data, which are automatic weather stations (AWS) data and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA 3B43; 3 hourly rainfall with $0.25^{\circ}{\times}0.25^{\circ}$ resolution) data over midland of Korea in July 26-29, 2011. Moreover, we evaluated urban rainfall-runoff relationship using Storm Water Management Model (SWMM). Several statistical measures (e.g., percent error of peak, precent error of volume, and time of peak) are used to validate the rainfall-runoff model's performance. The correlation coefficient (CC) and the Nash-Sutcliffe efficiency (NSE) are evaluated. The result shows that the high correlation was lead time (LT) 33-hour, LT 27-hour, and ESB forecasts, and the NSE shows positive values in LT 33-hour, and ESB forecasts. Through this study, it can be expected to utilizing the real-time urban flood alert using short-term weather forecast.

Analyis of stormwater and runoff characteristics in Anseongcun basin using HEC-HMS (HEC-HMS을 이용한 안성천 유역의 강우 유출 특성 분석)

  • Hwang, Byung-Gi;Yang, Seung-Bin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.17-24
    • /
    • 2018
  • The HEC-HMS model was applied to identify the rainfall-runoff processes for the Anseongchun basin, where the lower part of the stream has been damaged severely by tropical storms in the past. Modeling processes include incorporating with the SCS-CN model for loss, Clark's UH model for transformation, exponential recession model for baseflow, and Muskingum model for channel routing. The parameters were calibrated through an optimization technique using a trial and error method. Sensitivity analysis after calibration was performed to understand the effects of parameters, such as the time of concentration, storage coefficient, and base flow related constants. Two storm water events were simulated by the model and compared with the corresponding observations. Good accuracy in predicting the runoff volume, peak flow, and the time to peak flow was achieved using the selected methods. The results of this study can be used as a useful tool for decision makers to determine a master plan for regional flood control management.

LIDMOD Development for Evaluating Low Impact Development and Its Applicability to Total Maximum Daily Loads (지속가능한 도시개발을 위한 LID평가모델(LIDMOD)개발과 수질오염총량제에 대한 적용성 평가)

  • Jeon, Ji-Hong;Choi, Dong Hyuk;Kim, Tae Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • Low impact development (LID) technique is relatively new concept to reduce surface runoff and pollutant loading from land cover by attempting to match predevelopment condition with various integrated management practices (IMPs). In this study, computational model for designing and evaluating LID, named LIDMOD, was developed based on SCS-CN method and applied at Andong bus terminal to evaluate LID applicapability and design retention/detention area for volume or peak flow control. LIDMOD simulated with 21 years simulation period that yearly surface runoff by post-development without LID was significantly higher than that with LID showing about 2.8 times and LID could reduce efficiently yearly surface runoff with 75% reduction of increased runoff by conventional post development. LIDMOD designed detention area for volume/peak flow control with 20.2% of total area by hybrid design. LID can also efficiently reduce pollutant load from land cover. Pollutant loads from post-development without LID was much higher than those from pre-development with showing 37 times for BOD, 2 times for TN, and 9 times for TP. Pollutant loads from post-development with LID represented about 57% of those without LID. Increasing groundwater recharge reducing cooling and heating fee, creating green refuge at building area can be considered as additional benefits of LID. At the point of reducing runoff and pollutant load, LID might be important technique for Korean TMDL and LIDMOD can be useful tool to calculate unit load for the case of LID application.

A Simulation of the Runoff and the NPS Pollutants Discharge using SWMM Model (SWMM 모형을 이용한 도시 유역의 유출 및 NPS 오염물 배출 모의)

  • 신현석;윤용남
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.125-135
    • /
    • 1993
  • This study was conducted for two purposes. The first was the selection of the proper model for the urban runoff, and NPS(non-point source) loads and the second was the adjustment of the selected model through the calibration and the verification of the observed data on an urban drainage basin. The selected model for this study was the Storm Water Management Model(SWMM) developed and maintained by the US Environmental Protection Agency(EPA). In particular, the Runoff Block for the surface discharge and the Transport Block for the flow routing was used. The study basin is Youngdu basin, which is a typical developed urban drainage basin. The four rainfall events for the runoff and the two for the four NPS pollutants(SS, BOD, COD and TN) were used for the calibration and the estimation of the model parameters. This study performed the calibration with regard to the peak discharge, the time to peak discharge, the volume and the relative error for three items. It was shown that SWMM can successfully be used for the prediction of the runoff and the NPS pollutants discharge. The result of this study can be used as the basis for the analysis of the correlation between the runoff and the NPS pollutants discharges, and the analysis of the mass balance with the monthly and annual NPS loads in an urban drainage basin.

  • PDF

Loading Rates and Characteristics of Litter from Highway Stormwater Runoff (강우로 인해 고속도로로부터 유출되는 폐기물의 성상, 부하량 및 유출 특성)

  • Kim, Lee-Hyung;Kang, Joohyon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.415-421
    • /
    • 2004
  • Litter wastes on highway runoff are gradually being considered one of the major pollutants of concern in protecting the integrity of receiving waters for beneficial use. The California State Water Resources Control Board has identified in their 303(d) list at least 36 water bodies where trash or litter is considered a pollutant of concern. The first TMDL adopted by the Region 4 (Los Angeles area) of the California State Water Quality Control Board was for trash in the Los Angeles River. The first flush characteristic study was developed to obtain first flush water quality and litter data from representative stormwater runoff from standard highway drainage outfalls in the Los Angeles area. Total captured gross pollutants in stormwater runoff were monitored at six Southern California highway sites over two years. The gross pollutants were 90% vegetation and 10% litter. Approximately 50% of the litter was composed of biodegradable materials. The event mean concentrations show an increasing trend with antecedent dry days and a decreasing trend with total runoff volume or total rainfall. Event mean concentrations were ranged 0.0021 to 0.259g/L for wet gross pollutants and 0.0001 to 0.027g/L for wet litters. The first flush phenomenon was evaluated and the impacts of various parameters such as rainfall intensity, drainage area, peak flow rate, and antecedent dry period on litter volume and loading rates were evaluated. First flush phenomenon was generally observed for litter concentrations, but was not apparent with litter mass loading rates. Litter volume and loading rates appear to be directly related to peak storm intensity, antecedent dry days and total flow volume.

Runoff Analysis using ModClark Model (ModClark 모형을 이용한 유출 해석)

  • Ahn, Sang-Jin;Yoon, Seok-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.245-257
    • /
    • 2005
  • The purpose of the present study is examining the changes of runoff characteristics and extracting hydrologic parameters by applying ModClark model on grid divided watershed. Bocheong stream basin in Geum River system, one of the representative watersheds of IHP projects, is selected. Hydrology-based topographical informations are calculated using GIS data in the HEC-GeoHMS V1.1 extension in Arcview 3.2. The ModClark model requires precipitation data in a gridded format. The gridded data must be recorded in the HEC Data Storage System file format. Therefore, kriging method was used to interpolate the point values to create a grid that gives each cell over the entire watershed a precipitation value. Hec-DSSVue program was used to create DSS file for the rain gage data. The completed HEC-HMS model was calibrated for use in simulating three measured storm events and cell size of 10000m, 5000m, 2000m, 1000m was chosen for the application. As the result of applying distributed rainfall-runoff model to analyze relatively good agreement for peak discharge, runoff volume and peak time.

Hydrological Stability Analysis of the Existing Soyanggang Multipurpose Dam

  • Ko, Seok-Ku;Shin, Yong-Lo
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.37-49
    • /
    • 1996
  • This study aims at suggesting an alternative to improve flood controling capacity according to the cument design criteria for the existing Soyanggang Multi-purpose Dam which was constructed 20 years ago as the largest dam in Korea. The peak inflow of the adopted probable maximum flood (PMF) at the time of construction was 13,500 $m^3$/s. However, the newly estimated peak inflow of the PMF is 18,000 $m^3$/s which is 1.34 times bigger than the original one. This is considered to be due to the accumulation of the reliable flood and storm event records after construction, and due to the increasing tendency of the local flood peaks according to the influence of world-wide weather change. The new estimation of the probable maximum precipitation (PMP) was based on the hydro-meteorological method suggested by the guideline of the World Meteorological Organization (WMO). The unit hydrograph which was applied for the estimation of PMF was derived through linear programming algorithm by minimizing the sum of absolute deviations of the calculated and recorded flood hydrographs. In order to adopt the newly estimated PMF as a design flood, following four alternatives were compared : (1) allocation of more flood control space by lowering the normal high water level, (2) construction of a new spillway in addition to the existing spillway, (3) construction of a new dam which has relevant flood control storage at the upstream of the Soyanggang dam, (4) raising the existing dam crest. The preliminary evaluation of these alternatives resulted in that the second alternative is most economic and feasible. So as to stably cope with the newly estimated PMF by meeting all the current functions of the multipurpose dam, a detailed study of an additional spillway tunnel has to be followed.

  • PDF

LIDMOD3 Development for Design and Evaluation of Low Impact Development (저영향개발기법 설계 및 평가를 위한 LIDMOD3 개발)

  • Jeon, Ji-Hong;Seo, Seong-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.382-390
    • /
    • 2018
  • In this study, the LIDMOD3 was developed to design and evaluate low impact development (LIDMOD). In the same fashion, the LIDMOD3 employs a curve number (NRCS-CN) method to estimate the surface runoff, infiltration and event mean concentration as applicable to pollutant loads which are based on a daily time step. In these terms, the LIDMOD3 can consider a hydrologic soil group for each land use type LID-BMP, and the applied removal efficiency of the surface runoff and pollutant loads by virtue of the stored capacity, which was calculated by analyzing the recorded water balance. As a result of Model development, the LIDMOD3 is based on an Excel spread sheet and consists of 8 sheets of information data, including: General information, Annual precipitation, Land use, Drainage area, LID-BMPs, Cals-cap, Parameters, and the Results. In addition, the LIDMOD3 can estimate the annual hydrology and annual pollutant loads including surface runoff and infiltration, the LID efficiency of the estimated surface runoff for a design rainfall event, and an analysis of the peak flow and time to peak using a unit hydrolograph for pre-development, post-development without LID, and as calculated with LID. As a result of the model application as applied to an apartment, the LIDMOD3 can estimate LID-BMPs considering a well spatical distributed hydroloic soil group as realized on land use and with the LID-BMPs. Essentially, the LIDMOD3 is a screen level and simple model which is easy to use because it is an Excel based model, as are most parameters in the database. This system can be expected to be widely used at the LID site to collect data within various programmable model parameters for the processing of a detail LID model simulation.