• Title/Summary/Keyword: storm peak

Search Result 173, Processing Time 0.02 seconds

Evaluation on the Hydrologic Effects after Applying an Infiltration Trench and a Tree Box Filter as Low Impact Development (LID) Techniques (저영향 개발기법의 침투도랑과 나무여과상자 적용 후 수문학적 효과 평가)

  • Flores, Precious Eureka D.;Maniquiz-Redillas, Marla C.;Tobio, Jevelyn Ann S.;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • In this research, the hydrologic effects between a pre-existing urban landuse and low impact development (LID) applied conditions were compared and evaluated. The infiltration trench and tree box filter that were utilized in LID represent only 1% of the catchment area that they drain. Storm event monitoring were conducted from July 2010 to July 2014 on a total of 22 storm events in both LID sites. After LID, hydrological improvement was observed as the sites exhibited a delay (lag time) or reduction in the magnitude, frequency and duration of runoff and flow peaks as the rainfall progress. In addition, the maximum irreducible peak flow reduction for infiltration trench was found to be 61% and 33% for the tree box filter when rainfall was 40 mm and 30 mm, respectively. In designing LID, it is recommended to consider the storage capacity and catchment area, as well as the amount of rainfall and runoff on the site.

Concentration Characteristics and Health Effect Assessment of Atmospheric Particulate Matters During Asian Dust Storm Episodes (황사 에피소드 발생시 대기먼지의 농도 특성과 인체 영향)

  • Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.1
    • /
    • pp.21-35
    • /
    • 2009
  • The Asian dust storms which originated in the deserts of Mongolia and China transported particles to Korea and led to a high concentration of atmospheric particulate matters (PM) of more than $1000{\mu}g/m^3$ throughout the country in the spring, of 2007. Public concern, in Korea, about the possible adverse effects of these dust events has increased, as these dust storms can contain various air pollutants emitted from heavily industrialized eastern China. The objectives of this study were to understand the concentration characteristics of PM as a function of particle size between the Asian dust storm episodes and non-Asian dust period and to consider the mass size distribution of PM in the Asian dust storms and their water soluble ion species on the potential, possible effects on deposition levels in the three regions (nasopharyngeal, tracheobronchial, and alveolar) of the human respiratory system. The size distribution of PM mass concentration during the Asian dust storms showed a peak in the coarse particle region due to the long-range transport of soil particles from the deserts of Mongolia and China, which was identified by HYSPLIT-4 model for backward trajectory analysis of air arriving in the sampling site of Iksan. During the non-Asian dust period, there were two different types in PM size distribution: bimodal distribution when low concentrations of $PM_{2.5}$ were observed, while unimodal distribution having a peak in fine particle region when high concentrations of $PM_{2.5}$ were showed. This unimodal distribution with high concentrations of fine particulate and secondary air pollutants such as ${SO_4}^{2-}$, ${NO_3}^-$, ${NH_4}^+$ was found to be due to the long-range transport of air pollutants from industrialized eastern China. During the Asian dust storms, the mean concentrations of PM that can be deposited in the nasopharyngeal, tracheobronchial, and alveolar region were $128.8{\mu}g/m^3$, $216.5{\mu}g/m^3$, and $89.6{\mu}g/m^3$, respectively. During the non-Asian dust period, the mean concentrations of PM that can be deposited in the nasopharyngeal, tracheobronchial, and alveolar region were $8.4{\mu}g/m^3$, $9.5{\mu}g/m^3$ and $38.5{\mu}g/m^3$, respectively.

A Study of Sewer Layout to Control a Outflow in Sewer Pipes (우수관거 흐름 제어를 위한 관망 설계에 관한 연구)

  • Kim, Joong-Hoon;Joo, Jin-Gul;Jun, Hwan-Don;Lee, Jung-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Most developed models are designed to determine pipe diameter, slope and overall layout in order to minimize the cost for the design rainfall for the optimal sewer layout. However, these models are not capable of considering the superposition effect of runoff hydrographs in the sewer pipes. The flow characteristics in the sewer pipes, such as the sewer layout, pipe diameter and slope, vary according to the design of the sewer system. In particular, when the sewer network is modified, the shapes of the runoff hydrographs in the sewer pipes also change because of the superposition effect. In this study, the sewer layout is designed to control and distribute the flows in the sewer pipes, while considering the runoff superposition effect, in order to reduce the inundation risk at each junction. This is accomplished by separating the inflows that enter into each junction by changing the way in which pipes are connected between junctions. And this model combines SWMM (Storm Water Management Model) to perform the hydraulic analysis for the flows in the sewer network. The current sewer layout was modified to minimize the peak outflow at outlet in Garak basin, Seoul, South Korea. As the results, the peak outflows at the outlet were decreased by approximately 20% for the design rainfall during 30 minutes and the total overflows were also decreased for the excessive rainfalls.

An Optimal Sewer Layout Model to Reduce Urban Inundation (도시침수 저감을 위한 최적 우수관망 설계 모형)

  • Lee, Jung-Ho;Kim, Joong-Hoon;Jun, Hwan-Don
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.777-786
    • /
    • 2011
  • In the previous researches for storm sewer design, the flow path, pipe diameter and pipe slope were determined to minimize the construction cost. But in the sewer networks, the flows can be changed according to flow path. The current optimal sewer layout models have been focussed on satisfying the design inflow for sewer designs, whereas the models did not consider the occurrences of urban inundation from excessive rainfall events. However, in this research, the sewer networks are determined considering the superposition effect to reduce the inundation risk by controlling and distributing the inflows in sewer pipes. Then, urban inundation can be reduced for excessive rainfall events. An Optimal Sewer Layout Model (OSLM) was developed to control and distribute the inflows in sewer networks and reduce urban inundation. The OSLM uses GA (Genetic Algorithm) to solve the optimal problem for sewer network design and SWMM (Storm Water Management Model) to hydraulic analysis. This model was applied to Hagye basin with 44 ha. As the applied results, in the optimal sewer network, the peak outflow at outlet was reduced to 7.1% for the design rainfall event with 30 minutes rainfall duration versus that of current sewer network, and the inundation occurrence was reduced to 24.2% for the rainfall event with 20 years frequency and 1 hour duration.

Analysis of Runoff Impact by Land Use Change - Using Grid Based Kinematic Wave Storm Runoff Model (KIMSTORM) - (토지이용의 변화가 홍수유출에 미치는 영향분석)

  • Kim, Seong-Joon;Park, Geun-Ae;Chun, Moo-Kab
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.4 s.153
    • /
    • pp.301-311
    • /
    • 2005
  • The purpose of this study is to assess the quantitative effect of stream discharge due to land use changes. The upstream watershed of Pyeongtaek gauging station of Anseong-cheon ($592.6\;km^2$) was adopted. To accomplish the purpose, firstly, trace land use changes for the selected watershed which have some changes of land use by using Landsat images of 1986 and 1999 of the watershed and secondly, analyse the quantitative effect of stream discharge due to land use changes by applying GIS- based distributed hydrologic model KIMSTORM. The model was calibrated and verified at 2 locations (Pyeongtaek and Gongdo) by comparing observed with simulated discharge results for 7 storm events from 1998 to 2003. Model output was designed to provide information of land use impact on runoff components in the watershed and the sensitivity of impact level of each land use category on storm runoff. Land use impact was evaluated with the land use data sets for 1986 and 1999 for the same rainfall condition (160.5 mm). Area decrease of 4.8 percent of forest and 4.0 percent of paddy field during 13 years (1986 - 1999) within the watershed caused a 30.3 percent increase of peak runoff and a 9.3 percent increase of runoff volume.

Ionospheric Behaviors Over Korea Peninsula During the Super Geomagnetic Storm Using GPS Measurements (GPS 관측자료에 나타난 초대형 지자기 폭풍 기간 동안 한반도 상공 전리층 양상)

  • Chung, Jong-Kyun;Choi, Byung-Kyu;Baek, Jung-Ho;Jee, Geon-Hwa;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.467-478
    • /
    • 2009
  • The super-geomagnetic storms called 2003 Halloween event globally occurred during the period of 29 through 31 which are the following days when the solar flares of X18 class exploded on 28 October 2003. The S4 index from GPS signal strength and the peak electron density ($NmF_2$) from GPS tomography method are analyzed according to the date. The occurrences of the cycle slip and scintillation in the GPS signals are 1,094 and 1,387 on 28 and 29 October, respectively and these values are higher than 604 and 897 on 30 and 31 October. These mean the ionospheric disturbances are not always generated by the period of geomagnetic storm. Therefore, GPS S4 index is useful to monitor the ionospheric disturbances. Behaviors of ionospheric electron density estimated from GPS tomography method are analyzed with the date. At UT = 18 hr, the maximum $NmF_2$ is shown on 28 October. It agrees with $NmF_2$ variation measured from Anyang ionosonde, and the GPS signal are better condition on 30 and 31 October than 28 October. In conclusion, GPS signal condition is relation with geomagnetic activities, and depend upon the variation of the electron density. We will study the long-term data to examine the relationship between the GPS signal quality and the electron density as the further works.

Effect of a Hydrologic Similarity Unit and Storm Sewer Resolution on the SWMM Model Performance (수문학적 유사단위와 우수관망의 공간정밀도가 SWMM모형 성과에 미치는 영향)

  • Ha, Sung-Ryong;Lee, Kang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.79-90
    • /
    • 2006
  • The partitioning level of a catchment becomes an issue if the calculated results from different levels show the same performance regardless of the levels. This study aims to identify the proper processing level of spatial resolution for the SWMM model application in an urban area. Using GIS overlaying technique, the division of subcatchments as a hydrologic similarity unit (HSU) is achieved with a comprehensive consideration of surface slope conditions, flow directions of storm sewers, and current land cover situation. Three surface-sewer alternatives are made on the basis of three different levels of surface divisions as well as the number of sewer connections and used as runoff simulation fields for the application of SWMM. As the result, it is found that the effect of a spatial resolution on the surface runoff results is not significant. On the other hand, the accumulated pollution load from an unit subcatchment, which is built by aggregation of several unit subcatchments consisting of various land cover conditions is reduced through the deterioration of surface spatial resolution. Although overall runoff pattern and accumulated runoff are little affected by spatial resolution, the simulated runoff from sewer outlet shows slight difference at the peak appearance time. The gap between surface pollution load accumulated and it discharged from the sewer outlet in a surface-sewer alternative during runoff period is monitored but the level of error is less than 5-10% except the lowest spatial resolution case.

  • PDF

Analysis of Hydraulic Characteristics of Flood Plain Using Two-Dimensional Unsteady Model (2차원 부정류 모형을 이용한 둔치의 수리특성 분석)

  • Ku, Young Hun;Song, Chang Geun;Kim, Young Do;Seo, Il Wo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.997-1005
    • /
    • 2013
  • Since the cross-sectional shape of the Nakdong river is compound type, the water stage rises up to the top of the flood plane, as the flow discharge increases during the extreme rain storm in summer. The recent increase of rainfall intensity and flood frequency results in the immersions of parks and hydrophilic facilities located in the flood plain. Therefore it is necessary to analyze the hydraulic characteristics evolved by the extreme rain storm in the flood plain. The study reach ranging from the Gangjeong Goryeong Weir and the Dalseong Weir, where several hydraulic facilities are located along the channel, was selected and numerical simulations were conducted for 42 hours including the peak flood of the typhoon Sanba. The 2-D transient model, FaSTMECH was employed and the accuracy of the model was assessed by comparing the water level between the simulation results and the measured ones at a gauging station. It showed a high correlation with $R^2$ of 0.990, AME of 0.195, and RMSE of 0.252. In addition, the inundation time, the inundation depth, the inundation velocity, and the shear stress variation in the flood plain facilities were analyzed.

Flood stage analysis considering the uncertainty of roughness coefficients and discharge for Cheongmicheon watershed (조도계수와 유량의 불확실성을 고려한 청미천 유역의 홍수위 해석)

  • Shin, Sat-Byeol;Park, Jihoon;Song, Jung-Hun;Kang, Moon Seong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.661-671
    • /
    • 2017
  • The objective of this study was to analyze the flood stage considering the uncertainty caused by the river roughness coefficients and discharge. The methodology of this study involved the GLUE (Generalized Likelihood Uncertainty Estimation) to quantify the uncertainty bounds applying three different storm events. The uncertainty range of the roughness was 0.025~0.040. In case of discharge, the uncertainty stemmed from parameters in stage-discharge rating curve, if h represents stage for discharge Q, which can be written as $Q=A(h-B)^C$. Parameters in rating curve (A, B and C) were estimated by non-linear regression model and assumed by t distribution. The range of parameters in rating curve was 5.138~18.442 for A, -0.524~0.104 for B and 2.427~2.924 for C. By sampling 10,000 parameter sets, Monte Carlo simulations were performed. The simulated stage value was represented by 95% confidence interval. In storm event 1~3, the average bound was 0.39 m, 0.83 m and 0.96 m, respectively. The peak bound was 0.52 m, 1.36 m and 1.75 m, respectively. The recurrence year of each storm event applying the frequency analysis was 1-year, 10-year and 25-year, respectively.

Evaluation of GPM satellite and S-band radar rain data for flood simulation using conditional merging method and KIMSTORM2 distributed model (조건부합성 기법과 KIMSTORM2 분포형 수문모형을 이용한 GPM 위성 강우자료 및 Radar 강우자료의 홍수모의 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This study performed to simulate the watershed storm runoff using data of S-band dual-polarization radar rain, GPM (Global Precipitation Mission) satellite rain, and observed rainfall at 21 ground stations operated by KMA (Korea Meteorological Administration) respectively. For the 3 water level gauge stations (Sancheong, Changchon, and Namgang) of NamgangDam watershed ($2,293km^2$), the KIMSTORM2 (KIneMatic wave STOrm Runoff Model2) was applied and calibrated with parameters of initial soil moisture contents, Manning's roughness of overland and stream to the event of typhoon CHABA (82 mm in watershed aveprage) in $5^{th}$ October 2016. The radar and GPM data was corrected with CM (Conditional Merging) method such as CM-corrected Radar and CM-corrected GPM. The CM has been used for accurate rainfall estimation in water resources and meteorological field and the method combined measured ground rainfall and spatial data such as radar and satellite images by the kriging interpolation technique. For the CM-corrected Radar and CM-corrected GPM data application, the determination coefficient ($R^2$) was 0.96 respectively. The Nash-Sutcliffe efficiency (NSE) was 0.96 and the Volume Conservation Index (VCI) was 1.03 respectively. The CM-corrected data of Radar and GPM showed good results for the CHABA peak runoff and runoff volume simulation and improved all of $R^2$, NSE, and VCI comparing with the original data application. Thus, we need to use and apply the radar and satellite data to monitor the flood within the watershed.