• 제목/요약/키워드: storm hydrograph

검색결과 72건 처리시간 0.026초

Assessing Unit Hydrograph Parameters and Peak Runoff Responses from Storm Rainfall Events: A Case Study in Hancheon Basin of Jeju Island

  • Kar, Kanak Kanti;Yang, Sung-Kee;Lee, Jun-Ho
    • 한국환경과학회지
    • /
    • 제24권4호
    • /
    • pp.437-447
    • /
    • 2015
  • Estimation of runoff peak is needed to assess water availability, in order to support the multifaceted water uses and functions, hence to underscore the modalities for efficient water utilization. The magnitude of storm rainfall acts as a primary input for basin level runoff computation. The rainfall-runoff linkage plays a pivotal role in water resource system management and feasibility level planning for resource distribution. Considering this importance, a case study has been carried out in the Hancheon basin of Jeju Island where distinctive hydrological characteristics are investigated for continuous storm rainfall and high permeable geological features. The study aims to estimate unit hydrograph parameters, peak runoff and peak time of storm rainfalls based on Clark unit hydrograph method. For analyzing observed runoff, five storm rainfall events were selected randomly from recent years' rainfall and HEC-hydrologic modeling system (HMS) model was used for rainfall-runoff data processing. The simulation results showed that the peak runoff varies from 164 to 548 m3/sec and peak time (onset) varies from 8 to 27 hours. A comprehensive relationship between Clark unit hydrograph parameters (time of concentration and storage coefficient) has also been derived in this study. The optimized values of the two parameters were verified by the analysis of variance (ANOVA) and runoff comparison performance were analyzed by root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) estimation. After statistical analysis of the Clark parameters significance level was found in 5% and runoff performances were found as 3.97 RMSE and 0.99 NSE, respectively. The calibration and validation results indicated strong coherence of unit hydrograph model responses to the actual situation of historical storm runoff events.

수문곡선의 기저유출분리 방법에 대한 고찰 (A Comparative Study on the Storm Hydrograph Separation Methods for Baseflow through Field Applications)

  • 조성현;문상호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권1호
    • /
    • pp.50-59
    • /
    • 2022
  • There are several methods for separating the baseflow from the hydrograph, and graphical methods (GM) have mostly been used. GMs are those that separate the baseflow from the direct flow simply by connecting rising point with inflection point or points related to some duration from a hydrograph. Environmental tracer method (ETM) is another tool researched and developed under several conditions to estimate the groundwater recharge. The goal of this study is to separate the baseflow component from a storm hydrograph by applying various GMs and ETM, and to compare their results. The baseflow component estimated by ETM was different from the results by GMs in terms of their shapes of fluctuation and flow rates. Another important feature is that the form of the baseflow to which ETM is applied is similar to that of a storm hydrograph. This similarity is presumed to be due to the selection of tracer that respond quickly to rainfall.

단위유량도법에 의한 소유역의 계획홍수량 결정 (A Determination of Design Flood for a small Basin by Unit Hydrograph Method)

  • 윤용남;침순보
    • 물과 미래
    • /
    • 제9권2호
    • /
    • pp.76-86
    • /
    • 1976
  • The 30-year design flood hydrograph for the Musim Representative Basin, one of the study basins of the International Hydrological Program, is synthesized by the method of unit hydrograph. The theory of unit hydrograph has been well known for a long time. However, the synthesis of flood hydrograph by this method for a basin with insufficient hydrologic data is not an easy task and hence, assumptions and engineering judgement must be exercized. In this paper, the problems often encountered in applying the unit hydrograph method are exposed and solved in detail based on the theory and rational judgement. The probability rainfall for Cheonju Station is transposed to the Musim Basin since it has not been analyzed due to short period of rainfall record. The duration of design rainfall was estimated based on the time of concentration for the watershed. The effective rainfall was determined from the design rainfall using the SCS method which is commonly used for a small basin. The spatial distribution of significant storms was expressed as a dimensionless rainfall mass curve and hence, it was possible to determine the hyetograph of effective design storm. To synthesize the direct runoff hydrograph the 15-min. unit hydrograph was derived by the S-Curve method from the 1-hr unit hydrograph which was obtained from the observed rainfall and runoff data, and then it was applied to the design hyetograph. The exsisting maximum groundwater depletion curve was derived by the base flow seperation. Hence, the design flood hydrograph was obtained by superimposing the groundwater depletion curve to the computed direct runoff hydrograph resulting from the design storm.

  • PDF

도시 소유역 배수펌프장 운영개선 방안 연구 (1) - GIS 기반 수문모형에 의한 홍수유출수문곡선의 재현 (Operational Improvement of Small Urban Storm Water Pumping Station (1) - Simulation of Flood Hydrograph using GIS-based Hydrologic Model)

  • 길경익;한종옥;김구현
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.682-686
    • /
    • 2005
  • Recently some urban areas have been flooded due to heavy storm rainfalls. Though major causes of these floodings may be attributed to localized heavy rainfalls, other factors are related to urban flooding including deficiency of storm sewer network capacity, change of surface runoff due to covered open channels, and operational problems of storm drainage pump stations. In this study, hydrologic and hydraulic analysis of Sutak basin in Guri city were carried out to evaluate flooding problems occurred during the heavy storm in July, 2001. ArcView, a world most widely used GIS tool, was used to extract required data for the hydrologic analysis including basin characteristics data, concentration times, channel routing data, land use data, soil distribution data and SCS runoff curve number generation from digital maps. HEC-HMS, a GIS-based runoff simulation model, was successfully used to simulate the flood inflow hydrograph to Sutak pumping station.

유역특성과 유출특성간의 상관관계 해석에 의한 단위유량도의 합성 - 한강 및 금강유역 - (A Synthesis of Unit Hydrograph by a Correlation Analysis between the Basin Characteristics and the Runoff-Characteristics - Han and Geum River Basin -)

  • 윤용남;선우중호
    • 물과 미래
    • /
    • 제8권1호
    • /
    • pp.61-79
    • /
    • 1975
  • 본연구는 1974년 건설부 수자원국의 연구사업중의 하나인 $\ulcorner$홍수량 추정을 위한 합성단위유량도유도의 연구$\Ircorner$의 일부로서 건설부에서 제공한 재정적 후원에 감사를 드린다.

  • PDF

단일 호우 해석을 위한 Z-transform 기법의 적용 (An Application of Z-transform in Single Storm Analysis)

  • 박햇님;조원철
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.583-587
    • /
    • 2005
  • At present, various methods are available to analyze storm runoff data. Among these, application of Z-transform is comparatively simple and new, and the technique can be used to identify rainfall and unit hydrograph from analysis of a single storm runoff. The technique has been developed under the premise that the rainfall-runoff process behaves as a linear system for which the Z-transform of the direct runoff equals the product of the Z-transforms of the transfer function and the rainfall. In the hydrologic literatures, application aspects of this method to the rainfall-runoff process are lacking and some of the results are questionable. Thus, the present study provides the estimation of Z-transform technique by analyzing the application process and the results using hourly runoff data observed at the research basin of International Hydrological Program (IHP), the Pyeongchanggang River basin. This study also provides the backgrounds for the problems that can be included in the application processes of the Z-transform technique.

  • PDF

해빈과정의 해안선 변화에 관한 실험적 연구 (An Experimental Study on the Shoreline Change during Beach Process)

  • 손창배;이승건
    • 한국해양공학회지
    • /
    • 제14권3호
    • /
    • pp.55-60
    • /
    • 2000
  • This paper is descried the experimental results of beach process including storm surge and beach recovery. By testing different surge levels and durations, effects of these to shoreline change were evaluated. In addition of beach recovery were investigated experimentally. On the other hand, we proposed the method, which can be applicable to complex hydrograph such as storm surge by modifying equation proposed by Kriebel and Dean. Moreover, applicability of this method is verified by comparing computing result with experiments.

  • PDF

목감천 복원설계를 위한 비정상성을 고려한 설계홍수량의 산정 (Estimation of Design Discharge Considering Nonstationarity for River Restoration in the Mokgamcheon)

  • 이길성;오진호;박기두;성장현
    • 대한토목학회논문집
    • /
    • 제33권4호
    • /
    • pp.1361-1375
    • /
    • 2013
  • Lee et al. (2011)이 제시한 목감천 유역의 하천복원 설계절차에 근거하여 수리구조물의 설계와 관련 있는 설계홍수량을 산정에 있어 비정상성을 고려하여 산정하였다. 본 연구의 목적은 목감천 유역에서 비정상성을 고려한 새로운 설계홍수량을 제안하기 위함이다. 설계홍수량 산정방법인 설계-호우단위도법과 직접 홍수빈도해석법을 적용하였으며, 각각의 방법에 사용되는 빈도분석은 NCAR (National Center for Atmospheric Research)에서 개발된 extRemes 모형을 통하여 비정상성을 고려하였다. 직접 홍수빈도해석의 방법은 유량으로부터 직접 빈도해석을 수행한다는 점에서 신뢰성이 기대되지만, 설계-호우단위도법보다 다소 과소 추정되었다. 따라서 가장 크게 산정된 설계호우-단위도법의 100년 빈도 설계홍수량을 목감천 유역의 설계홍수량으로 결정하였다.

도심지 소유역에 적용 가능한 우수저류조의 용량 산정에 관한 연구 (A Study on the Calculation of Storage Volume of Storm-Water Detention Basins for Small Urban Catchments)

  • 김대근;고영찬
    • 상하수도학회지
    • /
    • 제19권5호
    • /
    • pp.619-624
    • /
    • 2005
  • This work is for examining a simplified equation based on the rational formula, which can easily decide storm-water detention volume in small urban catchments. The storm-water detention volume is determined by the inflow hydrograph flowing to detention basin and the outflow hydrograph discharged from the detention basin. The ratio of average outflow over the period of rainfall duration against allowable discharge was 0.5 in former simplified equation. But this research has found that the average outflow ratio depends on the storage methodology. In the case of the on-line storage method, the average outflow ratio is a function of the time of concentration of the catchments and rainfall duration, which ranged from 0.5~1.0. In the case of the off-line storage method, the average ratio is a function of peak discharge and allowable discharge except above time of concentration and rainfall duration, where its function value ranged from 1.0~2.0. When applying this equation to small catchment in Mokpo city, South Korea, we could easily calculate the relation curve between the storm-water detention volume and allowable discharge.

Simulation of Moving Storm in a Watershed Using Distributed Models

  • Choi, Gye-Woon;Lee, Hee-Seung;Ahn, Sang-Jin
    • Korean Journal of Hydrosciences
    • /
    • 제5권
    • /
    • pp.1-16
    • /
    • 1994
  • In this paper distributed models for simulating spatially and temporally varied moving storm in a watershed were developed. The complete simulation in a watershed is achieved through two sequential flow simulations which are overland flow simulation and channel network flow simulation. Two dimensional continuity equation and momentum equation of kinematic approximation were used in the overland flow simulation. On the other hand, in the channel network simulation two types of governing equations which are one dimensional continuity and momentum equations between two adjacent sections in a channel, and continuity and energy equations at a channel junction were applied. The finite difference formulations were used in the channel network model. Macks Creek Experimental Watershed in Idaho, USA was selected as a target watershed and the moving storm on August 23, 1965, which continued from 3:30 P.M. to 5:30 P.M., was utilized. The rainfall intensity fo the moving storm in the watershed was temporally varied and the storm was continuously moved from one place to the other place in a watershed. Furthermore, runoff parameters, which are soil types, vegetation coverages, overland plane slopes, channel bed slopes and so on, are spatially varied. The good agreement between the hydrograph simulated using distributed models and the hydrograph observed by ARS are Shown. Also, the conservations of mass between upstreams and downstreams at channel junctions are well indicated and the wpatial and temporal vaiability in a watershed is well simulated using suggested distributed models.

  • PDF