• Title/Summary/Keyword: storm and flood disaster

Search Result 85, Processing Time 0.025 seconds

Affecting Discharge of Flood Water in Paddy Field from Selecting Rainfall with Fixed and Unfixed Duration (고정, 임의시간 강우량 선택에 따른 농경지 배수 영향 분석)

  • Hwang, Dong Joo;Kim, Byoung Gyu;Shim, Jwa Keun
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.64-76
    • /
    • 2012
  • Recently, it has been increased disaster of crops and agricultural facilities with climate change such as regional storm, typhoon. However agricultural facilities have unsafe design criteria of improving drainage corresponding to this change. This study has analyzed the impact that inundation area and magnitude of drainage-facility is decided based on fixed- and unfixed-duration precipitation by applying revised design criteria of drainage for climate change. The result was shown that 1-day and 2-days rainfall for 20-years return period has increased about 11.4%, 4.4% respectively by changing fixed- to unfixed duration. And the increase rate of design flood was 15.0%. The result was also shown that Inundation area was enlarged by 6.6% as well as increased inundation duration under same basic condition in designed rainfall between fixed- and unfixed-duration. According to the analysis, it is necessary for pump capacity in unfixed-duration to be increased by 70% for same effect with fixed-duration. Therefore, when computing method of probability precipitation is changed from fixed one to unfixed-duration by applying revised design criteria, there seems to be improving effect in drainage design. Because 1440-minutes rainfall for 20-years return period with unfixed-duration is more effective than 1-day rainfall for 30-years return period with fixed-duration. By applying unfixed-duration rainfall, capacity of drainage facilities need to be expanded to achieve the same effects (Inundation depth & duration) with fixed-duration rainfall. Further study is required for considering each condition of climate, topography and drainage by applying revised design criteria.

  • PDF

Analysis on Inundation Characteristics for Flood Impact Forecasting in Gangnam Drainage Basin (강남지역 홍수영향예보를 위한 침수특성 분석)

  • Lee, Byong-Ju
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.189-197
    • /
    • 2017
  • Progressing from weather forecasts and warnings to multi-hazard impact-based forecast and warning services represents a paradigm shift in service delivery. Urban flooding is a typical meteorological disaster. This study proposes support plan for urban flooding impact-based forecast by providing inundation risk matrix. To achieve this goal, we first configured storm sewer management model (SWMM) to analyze 1D pipe networks and then grid based inundation analysis model (GIAM) to analyze 2D inundation depth over the Gangnam drainage area with $7.4km^2$. The accuracy of the simulated inundation results for heavy rainfall in 2010 and 2011 are 0.61 and 0.57 in POD index, respectively. 20 inundation scenarios responding on rainfall scenarios with 10~200 mm interval are produced for 60 and 120 minutes of rainfall duration. When the inundation damage thresholds are defined as pre-occurrence stage, occurrence stage to $0.01km^2$, 0.01 to $0.1km^2$, and $0.1km^2$ or more in area with a depth of 0.5 m or more, rainfall thresholds responding on each inundation damage threshold results in: 0 to 20 mm, 20 to 50 mm, 50 to 80 mm, and 80 mm or more in the rainfall duration 60 minutes and 0 to 30 mm, 30 to 70 mm, 70 to 110 mm, and 110 mm or more in the rainfall duration 120 minutes. Rainfall thresholds as a trigger of urban inundation damage can be used to form an inundation risk matrix. It is expected to be used for urban flood impact forecasting.

A Study on Promoting the Disaster Safety Consciousness of the Rural Residents Against the Storm and Flood (풍수해 대비 농촌 주민 재난안전 의식 고취를 위한 연구)

  • Park, Miri;Lee, Young Kune
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.94-94
    • /
    • 2018
  • 풍수해로부터 안전한 지역사회를 만들기 위해서는 국가적인 대책과 함께 지역내 사회구성원이 풍수해에 대한 사전대비의 중요성 인식과 피해를 최소화 시켜야한다는 사회적 인식이 강화되어야 한다. 그러나 농촌의 경우, 지역 개발 정책이 우선순위에 있어 농촌의 풍수해 예방정책이 후순위에 있는 경우가 많다. 더욱이 농촌의 풍수해 피해는 유사한 지역에서 반복적으로 발생하는 유형을 가지고 있으며, 지리 지형적, 고령화 인구 비중 등 사회적으로 풍수해에 취약한 지역이다. 또한 농촌 주민들 또한 예방보다는 풍수해 발생 후 복구에 대한 대책이 풍수해 대책이라 생각하는 인식을 지니고 있다. 실제로 농촌주민의 안전 불감증은 인터뷰 및 설문조사를 통해 나타났으며, 재난 대책에 대해 이장 혹은 관공서 직원에게만 의존하는 등 풍수해대비에 대해 무지하고 낙관적인 태도를 지니고 있었다. 농촌 주민의 재난 대응에 대한 무지와 무관심등의 인식 변화를 고려하지 않은 채 구조적인 차원의 대응은 풍수해의 예방에 있어 한계성이 발생한다. 농촌의 재난에 대한 인식변화는 주민들의 구조 및 체제에 대한 태도를 변화하게 함으로 써 보다 실효성 있는 변화를 가능하게 한다. 그러나 현 재난 대책에서는 농촌 주민의 재난대책 등에 대한 의식의 반영이 미비하며, 수준에 대한 정확한 측정 또한 어려운 실정이다. 본 연구에서는 농촌주민의 재난안전 의식의 고취를 위해 현재의 주민의 재난안전 의식의 수준과 실태를 파악할 수 있는 측정도구를 모색하였다. 따라서 본 연구에서 개발된 측정도구를 통해 농촌 주민의 재난안전의식에 측정 결과에 따른 각각 개선방향이 도출되어 농촌의 풍수해 대비 재난 대책에 대한 실효성이 증가될 것으로 기대된다.

  • PDF

A Study on the Consciousness Survey for the Establishment of Safety Village in Disaster (재난안전마을 구축을 위한 의식조사 연구)

  • Koo, Wonhoi;Baek, Minho
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.238-246
    • /
    • 2018
  • Purpose: The purpose of this study is to examine the directions for establishing a disaster safety village in rural areas where damage from a similar type of disaster occurs repeatedly by conducting the consciousness survey targeting at experts and disaster safety officials in a local government. Method: The risks of disaster in rural areas were examined and the concept and characteristics of disaster safety village which is a measure on the basis of Myeon (township) among the measures of village unit were examined in order to carry out this study. In addition, opinion polling targeting at officials-in-charge in the local government and survey targeting at experts in disaster safety and building village were conducted. Based on the findings, the directions for establishing a disaster safety village that fitted the characteristics of rural areas were examined. Result: The officials-in-charge in the local government answered that rural areas have a high risk of storm and flood such as heavy snowing, typhoon, drought, and heavy rain as well as forest fire, and it is difficult to draw voluntary participation of farmers for disaster management activities due to their main duties. They also replied that active support and participation of residents in rural areas are necessary for future improvement measures. The experts mostly replied that the problem of disaster safety village project is a temporary project which has low sustainability, and the lack of connections between the central government, local governments and residents was stressed out as the difficulties. They said that measures to secure the budget and the directions of project promotion system should be promoted by the central government, local governments and residents together. Conclusion: The results of this study are as follows. First, a disaster safety village should be established in consideration of the disaster types and characteristics. Second, measures to secure the budget for utilizing the central government fund as well as local government fund and village development fund should be prepared when establishing and operating a disaster safety village in rural areas. Third, measures to utilize a disaster safety village in rural areas for a long period of time such as the re-authorization system should be prepared in order to continuously operate and manage such villages after its establishment. Fourth, detailed measures that allow residents of rural areas to positively participate in the activities for establishing a disaster safety village in rural areas should be prepared.

Application of dual drainage system model for inundation analysis of complex watershed (복합유역의 침수해석을 위한 이중배수체계 유출모형의 적용)

  • Lee, Jaejoon;Kwak, Changjae;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • The importance of the dual drainage system model has increased as the urban flood damage has increased due to the increase of local storm due to climate change. The dual drainage model is a model for more accurately expressing the phenomena of surface flow and conduit flow. Surface runoff and pipe runoff are analyzed through the respective equations and parameters. And the results are expressed visually in various ways. Therefore, inundation analysis results of dual drainage model are used as important data for urban flood prevention plan. In this study, the applicability of the COBRA model, which can be interpreted by combining the dual drainage system with the natural watershed and the urban watershed, was investigated. And the results were compared with other dual drainage models (XP-SWMM, UFAM) to determine suitability of the results. For the same watershed, the XP-SWMM simulates the flooding characteristics of 3 types of dual drainage system model and the internal flooding characteristics due to the lack of capacity of the conduit. UFAM showed the lowest inundation analysis results compared with the other models according to characteristics of consideration of street inlet. COBRA showed the general result that the flooded area and the maximum flooding depth are proportional to the increase in rainfall. It is considered that the COBRA model is good in terms of the stability of the model considering the characteristics of the model to simulate the effective rainfall according to the soil conditions and the realistic appearance of the flooding due to the surface reservoir.

An Analysis on Climate Change and Military Response Strategies (기후변화와 군 대응전략에 관한 연구)

  • Park Chan-Young;Kim Chang-Jun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.171-179
    • /
    • 2023
  • Due to man-made climate change, global abnormal weather phenomena have occurred, increasing disasters. Major developed countries(military) are preparing for disasters caused by extreme weather appearances. However, currently, disaster prevention plans and facilities have been implemented based on the frequency and intensity method based on statistical data, it is not enough to prepare for disasters caused by frequent extreme weather based on probability basis. The U.S. and British forces have been the fastest to take research and policy approaches related to climate change and the threat of disaster change, and are considering both climate change mitigation and adaptation. The South Korean military regards the perception of disasters to be storm and flood damage, and there is a lack of discussion on extreme weather and disasters due to climate change. In this study, the process of establishing disaster management systems in developed countries(the United States and the United Kingdom) was examined, and the response policies of each country(military) were analyzed using literature analysis techniques. In order to maintain tight security, our military should establish a response policy focusing on sustainability and resilience, and the following three policy approaches are needed. First, it is necessary to analyze the future operational environment of the Korean Peninsula in preparation for the environment that will change due to climate change. Second, it is necessary to discuss climate change 'adaptation policy' for sustainability. Third, it is necessary to prepare for future disasters that may occur due to climate change.

GIS-based Disaster Management System for a Private Insurance Company in Case of Typhoons(I) (지리정보기반의 재해 관리시스템 구축(I) -민간 보험사의 사례, 태풍의 경우-)

  • Chang Eun-Mi
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.1 s.112
    • /
    • pp.106-120
    • /
    • 2006
  • Natural or man-made disaster has been expected to be one of the potential themes that can integrate human geography and physical geography. Typhoons like Rusa and Maemi caused great loss to insurance companies as well as public sectors. We have implemented a natural disaster management system for a private insurance company to produce better estimation of hazards from high wind as well as calculate vulnerability of damage. Climatic gauge sites and addresses of contract's objects were geo-coded and the pressure values along all the typhoon tracks were vectorized into line objects. National GIS topog raphic maps with scale of 1: 5,000 were updated into base maps and digital elevation model with 30 meter space and land cover maps were used for reflecting roughness of land to wind velocity. All the data are converted to grid coverage with $1km{\times}1km$. Vulnerability curve of Munich Re was ad opted, and preprocessor and postprocessor of wind velocity model was implemented. Overlapping the location of contracts on the grid value coverage can show the relative risk, with given scenario. The wind velocities calculated by the model were compared with observed value (average $R^2=0.68$). The calibration of wind speed models was done by dropping two climatic gauge data, which enhanced $R^2$ values. The comparison of calculated loss with actual historical loss of the insurance company showed both underestimation and overestimation. This system enables the company to have quantitative data for optimizing the re-insurance ratio, to have a plan to allocate enterprise resources and to upgrade the international creditability of the company. A flood model, storm surge model and flash flood model are being added, at last, combined disaster vulnerability will be calculated for a total disaster management system.

A Study on the Vulnerability Assessment of Solar Power Generation Facilities Considering Disaster Information (재해정보를 고려한 태양광발전시설의 취약성 평가에 관한 연구)

  • Heejin Pyo
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.57-71
    • /
    • 2024
  • This study aims to develop an evaluation method for solar power facilities considering disaster impacts and to analyse the vulnerabilities of existing facilities. Haenam-gun in Jeollanam-do, where the reassessment of existing facilities is urgent, was selected as the study area. To evaluate the vulnerability from a more objective perspective, principal component analysis and entropy methods were utilised. Seven vulnerability assessment indicators were selected: maximum hourly rainfall, maximum wind speed, number of typhoon occurrence days, number of rainfall days lasting more than five days, maximum daily rainfall, impermeable area ratio, and population density. Among these, maximum hourly rainfall, maximum wind speed, maximum daily rainfall, and number of rainfall days lasting more than five days were found to have the highest weights. The overlay of the derived weights showed that the southeastern regions of Haenam-eup and Bukil-myeon were classified as Grade 1 and 2, whereas the northern regions of Hwawon-myeon, Sani-myeon, and Munnae-myeon were classified as Grade 4 and 5, indicating differences in vulnerability. Of the 2,133 facilities evaluated, 91.1% were classified as Grade 3 or higher, indicating a generally favourable condition. However, there were more Grade 1 facilities than Grade 2, highlighting the need for countermeasures. This study is significant in that it evaluates solar power facilities considering urban disaster resilience and is expected to be used as a basic resource for the installation of new facilities or the management and operation of existing ones.

A Study on the Ripple Effect Economy of Busan Ubiquitous-Safety Realization on Using an Input-Output Model (I-O모형을 이용한 부산 U-방재 실현의 경제적 파급 효과 분석에 관한 연구)

  • Ryu, Tae-Chang;Kim, Tae-Min;Kim, Gyeong-Su
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.93-100
    • /
    • 2008
  • Dense of population construction and high density of skyscraper, and geological characteristics caused natural disasters(e.g. typhoon, tsunami, flood, storm, earthquake, etc.) and manmade disasters(e.g. fire, collapse, explosion, traffic accident, etc.). the extent and scale of the disaster are getting larger. To cope with such problems, Busan City has established the basic plan to secure the life and property of the citizens through model strategy and design of Ubiquitous-Safety Busan. This study quantitatively analyzed the ripple effect on local economy through the fulfillment of Ubiquitous-Safety. The production inducing effect of 250 billion won directly and indirectly can be estimated due to the realization of Ubiquitous-Safety. The value added effect of 115 billion won can be estimated. the employment effect of 5,580 persons can be generated with income effect of 51 billion won.

Application of Level-Pool method for Flood and Storm Disaster Insurance Rate (풍수해보험요율 산정을 위한 Level-Pool 방법의 적용)

  • Yoo, Jae-hwan;Song, Ju-il;Jang, Moon-yup;Kim, Han-tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.262-262
    • /
    • 2015
  • 풍수해보험은 국민안전처가 관장하고 민영보험사가 운영하는 정책보험으로 국민이 예기치 못한 풍수해 피해에 대처할 수 있도록 보험료의 일부를 국가 및 지방자치단체에서 보조해 주는 제도이다. 그러나 풍수해보험은 불합리한 보험요율체계 등의 문제점으로 인해 저조한 가입률을 보이고 있다. 현재 풍수해보험요율 산정시 과거의 피해이력만을 근거로 보험요율을 산정하고 있다. 또한 풍수해 보험은 태풍, 홍수, 호우, 강풍, 풍랑, 해일, 대설, 지진을 대상재해로 분류하고 있으나 동일 시군구 내에서는 재해요인별 원인별 가중치가 동일하게 적용되어 단일 보험요율을 적용하고 있다. 현재의 불합리한 보험요율체계의 문제점을 보완하고 향후 피해발생 위험을 고려하여 피해 특성에 따라 지역적으로 차등화된 보험요율을 적용하는 방안이 필요하다. 이에 따라 본 연구에서는 풍수해보험요율 산정을 위해 풍수해보험 대상재해 중 내수침수에 대한 분석 방안을 제시하고 적용성을 검토하고자 하였다. 우선 다양한 내수침수분석방법 중 전국단위의 내수침수분석을 위해 경제성, 간편성, 정확성을 고려하여 Level-Pool 방법을 선정하였다. 그리고 기존 Level-Pool 방법의 문제점을 보완하기 위해 내수침수분석 결과의 정확성을 향상시킬 수 있도록 도시계획 용도지역을 고려한 수정 Level-Pool 방법을 제시하고, 풍수해저감종합계획과 비교 검토를 실시하여 적용성을 검토하였다. 또한, 제시한 수정 Level-Pool 방법을 울산, 대구, 경북, 강원지역에 적용하여 내수침수위험지역을 도출하였다. 본 연구에서 제시한 수정 Level-Pool 방법을 통해 전국단위 내수침수 해석시 지역별로 차등화되고, 정확도가 높은 내수침수지역을 도출하여 풍수해보험요율 산정을 위한 기초자료로 활용할 수 있을 것으로 판단된다.

  • PDF