• Title/Summary/Keyword: storm and flood disaster

Search Result 85, Processing Time 0.025 seconds

The Method for Transforming the Shape File in ESRI into the Oracle Spatial DB for the Spatial DB Construction of the Drainage System (하수관거 공간DB 구축을 위한 ESRI 공간 파일의 오라클 공간DB 자동 변환 기법)

  • Kim, Ki-Uk;Hwang, Hyun-Suk;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.7
    • /
    • pp.989-996
    • /
    • 2009
  • Recently, use of the GIS (Geographic Information System) for the disaster of the urban inundation is increasing. The digital disaster map is the system which analyzes the occurrence area of inundation in the past and forecasts the flood areas by the hydrology method. The development of the system which simulates the flood forecast area by the SWMM(Storm Water Management System) and hydrology method and displays the danger areas is required for the construction of the inundation forecast system. And the spatial database which contains information of the urban facilities such as the street and building and the sewer system such as the manhole and drainage and the result of the hydrology analysis is constructed. In this paper, we propose the method for transforming the Shape File in ESRI into the Oracle spatial database to construct the spatial data for the drainage systems and urban facilities using the Shape File format in the ESRI. We suggest the algorithm for the transformation of the data format, and develop the prototype system to display the inundation area using the spatial database.

  • PDF

Development of a Short-term Rainfall Forecasting Model Using Weather Radar Data (기상레이더 자료를 이용한 단시간 강우예측모형 개발)

  • Kim, Gwang-Seob; Kim, Jong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.1023-1034
    • /
    • 2008
  • The size and frequency of the natural disaster related to the severe storms are increased for recent decades in all over the globe. The damage from natural disasters such as typhoon, storm and local severe rainfall is very serious in Korea since they are concentrated on summer season. These phenomena will be more frequent in the future because of the impact of climate change related to increment of $CO_2$ concentration and the global warming. To reduce the damage from severe storms, a short-range precipitation forecasting model using a weather radar was developed. The study was conducted as following four tasks: conversion three-dimensional radar data to two-dimensional CAPPI(Constant Altitude Plan Position Indicator) efficiently, prediction of motion direction and velocity of a weather system, estimation of two-dimensional rainfall using operational calibration. Results demonstrated that two-dimensional estimation using weather radar is useful to analyze the spatial characteristics of local storms. If the precipitation forecasting system is linked to the flood prediction system, it should contribute the flood management and the mitigation of flood damages.

A Study of the Situation Based Disaster Response Model from the Damage of Storm and Flood Field Manual (풍수해 현장조치 행동매뉴얼 분석을 통한 상황 기반 재난 대응 모델 연구)

  • Lee, Chang Yeol;Park, Gil Joo;Kim, Twehwan;Lee, Hyeon Sung
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.617-625
    • /
    • 2019
  • Purpose: The fields manuals which is managed by the each disaster types are the integrated guideline. When the disaster occurred, all kinds of SOPs which are described in the manual does not need. Therefore, the person in charge is confused which SOP is executed. In this study, we propose the disaster response process model based on the specific disaster situation case. Method: Firstly, we define the disaster situation cases which is mentioned in the field manual, and then, we develop the disaster response process model including indispensible SOPs for the specific disaster situation case. As a verification and feedback process, we apply the model to Safety Korea Exercise scenario. Result: We developed SOP model and disaster response process model reflecting the concept of the disaster situation case. Conclusion: Safety Kore Exercise scenario reflecting the developed model may continuously upgrade the field manual.

Health Impacts of Climate Change and Natural Disaster (기후변화와 자연재난의 건강영향)

  • Kim, Daeseon;Lee, Chulwoo;Vatukela, Jese
    • Journal of Appropriate Technology
    • /
    • v.5 no.2
    • /
    • pp.118-125
    • /
    • 2019
  • Climate change is one part of 17 Sustainable Development Goals (SDGs). According to the Fifth Assessment Report by the Inter- governmental Panel on Climate Change(IPCC) published in 2014, global warming is caused by greenhouse gas (GHG) emissions. The most important GHG is carbon dioxide (CO2), which is released by the burning of fossil fuels and, to a lesser extent, by land use practices, followed by nitrous oxide and methane. IPCC predicts that global temperatures will rise 3.7℃ and sea level will rise 0.63 m by 2099 in the case of no strong restraint. According to the report, we can expect a massive species extinctions, changes in storm and drought cycles, altered ocean circulation, and redistribution of vegetation by global warming. However, climate changes, especially global warming, are the largest potential threat to human health and the source of a number of diseases globally. If climate changes are continued uncontrolled, human health will be adversely affected by the accelerating climate change and the natural disaster induced by climate change. It means we will face more serious conditions of injury, disease, and death related to natural disasters such as flood, drought, heat waves, malnutrition, more allergy, air pollution and climate change related infections related to morbidity and mortality. This review emphasizes on the relationship between global climate changes and human health and provides some suggestions for improvement.

A Study of Recovery Standards and Post-Evaluation Method for Long Term Community Preventive Recovery Plan (개선복구계획 수립기준 및 효과측정 연구)

  • Jung, Woo-Young;Jung, Sang-Man;Choi, Hyun-Kyu;Lee, Sang-Moon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.31-37
    • /
    • 2009
  • Most damages of civil infrastructures under natural disasters are frequently occurred at surrounding areas of the river or the road. Every year, Recovery for these disaster damages are performed by the government. Recently, the government decide to change current recovery plan system because current recovery plan which doesn't consider future disaster impacts at a site has been proved to be ineffective. Accordingly, new permanency recovery plan system is needed and its corresponding ideas are presented in this research considering more detailed disaster damage classifications and cause assessments. The proposed permanency recovery plan would also provide more systematic and diverse recovery response strategies including both two concepts, for example Preparedness considered by risk assessment and management, and Mitigation investigated by hazard impact analyses.

A Study on the Analysis of Information Element of COP-Based Situation Panel for Efficient Disaster Management in the Situation Room (상황실의 효율적인 재난관리를 위한 COP기반 상황판 정보요소 분석에 관한 연구: 풍수해를 중심으로)

  • Cho, Jung-Yun;Song, Ju-Il;Jang, Cho-Rok;Jang, Moon-Yup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.393-401
    • /
    • 2021
  • This study derives essential information elements that should be shared in the situation board by utilizing the concept of common operating picture (COP). The COP's concept and actual overseas cases were confirmed, and COP information elements that should be considered for disaster situations were redefined. The COP disaster response information elements were derived by analyzing the standard manual for disaster response and daily situation reports issued in Korea. The information elements were divided into four stages (①Report reception and recognition stages, ②Situation propagation and reporting stages, ③Emergency equipment operation stages, ④Recovery and recovery stages), centered on storm and flood damage. Further analysis of the detailed information elements was conducted to derive the information elements that must be shared in the context board. The information is shared along with spatial and geographical characteristics due to the characteristics of the COP, providing complex information to decisionmakers and officials, enabling diverse access to disaster situations. Furthermore, it is expected that disaster response will be more efficient by sharing the information in common.

Analysis of 2-Dimensional Shallow Water Equations Using Multigrid Method and Coordinate Transformation

  • Lee, Jong-Seol;Cho, Won-Cheol
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.26 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • Various numerical methods for the two dimensional shallow water equations have been applied to the problems of flood routing, tidal circulation, storm surges, and atmospheric circulation. These methods are often based on the Alternating Direction Implicity(ADI) method. However, the ADI method results in inaccuracies for large time steps when dealing with a complex geometry or bathymetry. Since this method reduces the performance considerably, a fully implicit method developed by Wilders et al. (1998) is used to improve the accuracy for a large time step. Finite Difference Methods are defined on a rectangular grid. Two drawbacks of this type of grid are that grid refinement is not possibile locally and that the physical boundary is sometimes poorly represented by the numerical model boundary. Because of the second deficiency several purely numerical boundary effects can be involved. A boundary fitted curvilinear coordinate transformation is used to reduce these difficulties. It the curvilinear coordinate transformation is used to reduce these difficulties. If the coordinate transformation is orthogonal then the transformed shallow water equations are similar to the original equations. Therefore, an orthogonal coorinate transformation is used for defining coordinate system. A multigrid (MG) method is widely used to accelerate the convergence in the numerical methods. In this study, a technique using a MG method is proposed to reduce the computing time and to improve the accuracy for the orthogonal to reduce the computing time and to improve the accuracy for the orthogonal grid generation and the solutions of the shallow water equations.

  • PDF

Detection of Water Bodies from Kompsat-5 SAR Data (Kompsat-5 SAR 자료를 이용한 수체 탐지)

  • Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.539-550
    • /
    • 2016
  • Detection of water bodies in land surface is an essential part of disaster monitoring, such as flood, storm surge, and tsunami, and plays an important role in analyzing spatial and temporal variation of water cycle. In this study, a quantitative comparison of different thresholding-based methods for water body detection and their applicability to Kompsat-5 SAR data were presented. In addition, the effect of speckle filtering on the detection result was analyzed. Furthermore, the variations of threshold values by the proportion of the water body area in the whole image were quantitatively evaluated. In order to improve the binary classification performance, a new water body detection algorithm based on the bimodality test and the majority filtering is presented.

A Two-dimensional Hydraulic Analysis Considering the Influence of River Inflow and Harbor Gate in the Bay (Harbor Gate와 유입하천의 영향을 고려한 만내의 2차원 수리해석)

  • Lee, Jae Joon;Lee, Hoo Sang;Shim, Jae Sol;Yoon, Jong Ju
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • In this study, when seawall or harbor gate is installed for coastal disaster prevention, a two-dimensional water analysis in the bay is carried out to consider the flood amount of river inflow and effect of harbor gate. The Yeongsan river and the port Mokpo area are selcected for the study region. Then, by analyzing the hydraulic characteristics of flood flow of the Yeongsan river, we analysed the compatibility of the results in the two-dimensional hydrodynamic model. A tw-odimensional water analysis were conducted for the four cases considering whether a harbor gate is installed or not, and whether the inland water boundary condition is considered or not, also with open sea boundary condition. The results of the two-dimensional water analysis shows that water level change near the port Mokpo area is mainly caused by the discharge of the estuary barrage of the Yeongsan river because the harbor gate was installed. In addition, it is revealed that the volume of reservoir created by the harbor gate and the estuary barrage is too much small compared to the volume of the discharge from the Yeongsan river. Therefore, when the harbor gate is installed in the open sea, we concluded that a flexible management between the harbor gate and the estuary barrage of the Yeongsan river is required. A initial water level of the bay and outflow from the harbor gate are proposed for disaster prevention in the coastal area of port Mokpo.

Assessment of Feasibility of Rainfall-Runoff Simulation Using SRTM-DEM Based on SWMM (SWMM 기반 SRTM-DEM을 활용한 강우-유출 모의 가능성 평가)

  • Mirae Kim;Junsuk Kang
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.443-452
    • /
    • 2024
  • The recent increase in impermeable surfaces due to urbanization and the occurrence of concentrated heavy rainfall events caused by climate change have led to an increase in urban flooding. To predict and prepare for flood damage, a convenient and highly accurate simulation of rainfall-runoff based on geospatial information is essential. In this study, the storm water management model (SWMM) was applied to simulate rainfall runoff in the Bangbae-dong area of Seoul, using two sets of topographical data: The conventional topographic digital elevation model (TOPO-DEM) and the proposed shuttle radar topography mission (SRTM)-DEM. To evaluate the applicability of the SRTM-DEM for rainfall-runoff modeling, two DEMs were constructed for the study area, and rainfall-runoff simulations were performed. The construction of the terrain data for the study area generally reflected the topographical characteristics of the area. Quantitative evaluation of the rainfall-runoff simulation results indicated that the outcomes were similar to those obtained using the existing TOPO-DEM. Based on the results of this study, we propose the use of SRTM-DEM, a more convenient terrain data, in rainfall-runoff studies, rather than asserting the superiority of a specific geospatial data.