• Title/Summary/Keyword: storage of rice

Search Result 867, Processing Time 0.03 seconds

Drainage Performance of Various Subsurface Drain Materials- (배수개선공법개발에 관한 연구(I) -각종 지하배수용 암거재료의 배수성능-)

  • 김철회;이근후;유시조;서원명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.3
    • /
    • pp.104-120
    • /
    • 1979
  • I. Title of the Study Studies on the Development of Improved Subsurface Drainage Methods. -Drainage Performance of Various Subsurface Drain Materials- II. Object of the Study Studies were carried out to select the drain material having the highest performance of drainage; And to develop the water budget model which is necessary for the planning of the drainage project and the establishment of water management standards in the water-logged paddy field. III. Content and Scope of the Study 1. The experiment was carried out in the laboratory by using a sand tank model. The drainage performance of various drain materials was compared evaluated. 2. A water budget model was established. Various parameters necessary for the model were investigated by analyzing existing data and measured data from the experimental field. The adaptability of the model was evaluated by comparing the estimated values to the field data. IV. Results and Recommendations 1. A corrugated tube enveloped with gravel or mat showed the highest drainage performance among the eight materials submmitted for the experiment. 2. The drainage performance of the long cement tile(50 cm long) was higher than that of the short cement tile(25 cm long). 3. Rice bran was superior to gravel in its' drain performance. 4. No difference was shown between a grave envelope and a P.V.C. wool mat in their performance of drainage. Continues investigation is needed to clarify the envelope performance. 5. All the results described above were obtained from the laboratory tests. A field test is recommended to confirm the results obtained. 6. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as follows; $$D=\Sigma\limit_{t=1}^{n}(Et-R_{\ell}-I+W_d)..........(17)$$ 7. Among the various empirical formulae for potential evapotranspiration, Penman's formular was best fit to the data observed with the evaporation pans in Jinju area. High degree of positive correlation between Penman;s predicted data and observed data was confirmed. The regression equation was Y=1.4X-22.86, where Y represents evaporation rate from small pan, in mm/100 days, and X represents potential evapotranspiration rate estimated by Penman's formular. The coefficient of correlation was r=0.94.** 8. To estimate evapotranspiration in the field, the consumptive use coefficient, Kc, was introduced. Kc was defined by the function of the characteristics of the crop soil as follows; $Kc=Kco{\cdot}Ka+Ks..........(20)$ where, Kco, Ka ans Ks represents the crop coefficient, the soil moisture coefficient, and the correction coefficient, respectively. The value of Kco and Ka was obtained from the Fig.16 and the Fig.17, respectively. And, if $Kco{\cdot}Ka{\geq}1.0,$ then Ks=0, otherwise, Ks value was estimated by using the relation; $Ks=1-Kco{\cdot}Ka$. 9. Into type formular, $r_t=\frac{R_{24}}{24}(\frac{b}{\sqrt{t}+a})$, was the best fit one to estimate the probable rainfall intensity when daily rainfall and rainfall durations are given as input data, The coefficient a and b are shown on the Table 16. 10. Japanese type formular, $I_t=\frac{b}{\sqrt{t}+a}$, was the best fit one to estimate the probable rainfall intensity when the rainfall duration only was given. The coefficient a and b are shown on the Table 17. 11. Effective rainfall, Re, was estimated by using following relationships; Re=D, if $R-D\geq}0$, otherwise, Re=R. 12. The difference of rainfall amount from soil moisture depletion was considered as the amount of drainage required. In this case, when Wd=O, Equation 24 was used, otherwise two to three days of lag time was considered and correction was made by use of storage coefficient. 13. To evaluate the model, measured data and estimated data was compared, and relative error was computed. 5.5 percent The relative error was 5.5 percent. 14. By considering the water budget in Jinju area, it was shown that the evaporation amount was greater than the rainfall during period of October to March in next year. This was the behind reasonning that the improvement of surface drainage system is needed in Jinju area.

  • PDF

Physicochemical properties and oxidative stabilities of chicken breast jerky treated various sweetening agents (당침지 처리된 닭 가슴살 육포의 이화학적 특성 및 산화안정성)

  • Nam, Dong-Geon;Jeong, Beom-Gyun;Chun, Jiyeon
    • Food Science and Preservation
    • /
    • v.24 no.1
    • /
    • pp.84-92
    • /
    • 2017
  • Chicken breast jerky (CJ) was prepared by drying chicken breast at $50^{\circ}C$ for 9 hrs after marinating it in a various sweetening sauce including white sugar (WS), brown sugar (BS), rice syrup (RS), fructooligosaccharide (FO), pineapple concentrate (PC), Rubus coreanus extract (RCE), or honey (H), and its physicochemical and sensory properties were investigated. The CJ was found to contain 22.5-25.0% moisture, 41.0-46.6% protein, and 0.4-1.0% fat, which indicates that it could serve as a high-protein and low-fat snack. The type of sweeteners significantly affected the yield, pH, total viable cell count, and water activity of the CJ, showing ranges of 40.9-50.1%, 5.2-5.9, $2.5-6.2{\times}10^4CFU/g$, and 0.74-0.81, respectively. Both the water activity and pH were the lowest in CJ-RCE where of the highest in CJ-WS. The cohesiveness, springiness, and chewiness of the CJ significantly differed depending on the type of sweeteners (p<0.05). CJ-RCE showed the best taste and overall acceptability in a sensory test. After storage at $50^{\circ}C$ for 2 weeks, thiobarbituric acid reactive substance (TBARS) content (58.3 malondialdehyde (MDA) mg/kg) of CJ-RCE was much lower than those of control beef (75.6 MDA mg/kg) and pork jerky (98.0 MDA mg/kg), showing the good oxidative stability of CJ-RCE. Overall, marination in RCE sauce was suitable for the preparation of CJ with good quality in terms of its water activity, fat and protein contents, sensory property and oxidative stability.

Quality Properties and Antioxidant Activities of Korean Traditional Rice-Based Wine, Makgeolli Added with Sweet Pumpkin (단호박을 첨가하여 제조한 막걸리의 품질특성 및 항산화 활성)

  • Kim, Ji Yoon;Song, Min Gyu;Jeon, Eun Bi;Park, Shin Young
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.3
    • /
    • pp.271-279
    • /
    • 2021
  • Sweet pumpkin is rich in minerals such as calcium, phosphorus and fiber, and also contains a large amount of β-carotene, which has antioxidant effects. In this study, Makgeolli containing steaming sweet pumpkin (SP) was manufactured to enhance the antioxidant activity. To prepare the Makgeolli, SP was added in amounts of 5, 10, 20, and 30% (w/w), and the chemical (pH, total acidity, alcohol), microbiological (lactic acid bacteria, yeast) properties, and antioxidant activities (DPPH, ABTS) were examined during fermentation and storage for 9 days. The pH of SP Makgeolli was 4.00-4.23 at day 1 of fermentation, and then the pH gradually decreased as fermentation progressed, showing the lowest results at day 9 (3.28-3.52). At day 1, the total acidity was significantly increased (P<0.05) as the amount of SP (0-30%; 0.09-0.55%) and the total acidity in SP Makgeolli (1.01-1.20) was also rapidly increased by 5 days of fermentation. Alcohol content was significantly increased (P<0.05) as the amount of SP (0-30%; 4.59-5.77%) increased at day 9. The counts of lactic acid bacteria and yeast in SP Makgeolli were 8.0-8.1 and 7.9-7.8.0 CFU/mL, respectively, which was higher than SP 0% at day 9. DPPH and ABTS radical scavenging activities were significantly increased (P<0.05) as the amount of SP (0-30%; 48.29-78.97% for DPPH, 62.12-86.68% for ABTS) increased at day 9. This study suggests that Makgeolli added with SP could be potentially and commercially developed due to its superior microbiological and chemical properties, including high antioxidant activities.

Field Survey on Liquid Manure Utilization in the Agricultural Farms (경종농가에서의 액비이용 실태조사)

  • Choi D. Y.;Kwag J. H.;Park C. H.;Jeong K. H.;Jeon B. S.;Choi H. C.;Kang H. S.;Yang C. B.;Choi H. L.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.3
    • /
    • pp.155-162
    • /
    • 2004
  • The livestock liquid manure is one of important source for production of friendly environmental crops and have been used widespreadly in recent years. This survey is to eventually investigate the actual conditions of liquid manure utilization for cultivation of crops in the agricultural farm, based on the survey for 61 selected farms in 8 provinces(except Jeju province) included 22 counties in Korea. The results obtained in this survey were summarized as follow; $72.1\%$ of liquid manure storage tank(44) was located in the farmland and $27.9\%$(17) was in the fm. Most of liquid manure tank volume and material were 200 M/T($67.2\%$) and Polyethylene Double Frame panel($44.3\%$). The pro-portions of liquid manure application land were $45.9\%$ for rice paddy, $36.1\%$ for dry field, $16.4\%$ for orchard and $1.6\%$ for other, respectively. The controversial points of liquid manure utilization were malodor($60.7\%$), equipment possession($22.9\%$), no problem($13.1\%$) and farmland possession ($2.3\%$), respectively.

  • PDF

Seed Viability and Growth Characteristics of Eclipta prostrata (L.) L. (한련초의 종자생존력(種子生存力) 및 생장특성(生長特性))

  • Lee, H.K.;Moody, K.
    • Korean Journal of Weed Science
    • /
    • v.8 no.3
    • /
    • pp.309-316
    • /
    • 1988
  • Several experiments were conducted to investigate the achene viability and growth characteristics of Eclipta prostrata (L.) L. No dormancy and no after-ripening requirement were found for E. prostrata achenes. When achenes were stored at room temperature, germination did not decrease with up to 5 months storage. Large differences in loss of viability of E. prostrata achenes occurred when different dehydration methods were used. Immediate dehydration resulted in high viability, but slow dehydration resulted in severe loss of viability. Achene viability at shallow burial depths (5 and 10 cm deep) was lower under upland soil conditions than under lowland soil conditions. Seedling growth was greatly reduced when flooding to a depth of 10 cm occurred at or before the 4-leaf stage. Flooding after the 4-leaf stage stimulated stem elongation. Branching started from the second week and usually terminated at the tenth week. Leaf size was determined by the branch which are related to the assimilate supply. Flowering of E. prostrata started during the fifth week after emergence, and mature achenes were produced from the sixth week. Ten to 14 days were needed for the achenes to mature. About 14,000 achenes were produced on each plant. Achene production per week increased from the sixth week to the tenth week and thereafter it declined. The average number of achenes per inflorescence decreased with delay in flowering.

  • PDF

Regional Development And Dam Construction in Korea (한국의 지역개발과 댐건설)

  • 안경모
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.38-42
    • /
    • 1976
  • Because of differences in thoughts and ideology, our country, Korea has been deprived of national unity for some thirty years of time and tide. To achieve peaceful unification, the cultivation of national strength is of paramount importance. This national strength is also essential if Korea is to take rightful place in the international societies and to have the confidence of these societies. However, national strength can never be achieved in a short time. The fundamental elements in economic development that are directly conducive to the cultivation of national strength can be said to lie in -a stable political system, -exertion of powerful leadership, -cultivation of a spirit of diligence, self-help and cooperation, -modernization of human brain power, and -establishment of a scientific and well planned economic policy and strong enforcement of this policy. Our country, Korea, has attained brilliant economic development in the past 15 years under the strong leadership of president Park Chung Hee. However, there are still many problems to be solved. A few of them are: -housing and home problems, -increasing demand for employment, -increasing demand for staple food and -the need to improve international balance of payment. Solution of the above mentioned problems requires step by step scientific development of each sector and region of our contry. As a spearhead project in regional development, the Saemaul Campaign or new village movement can be cited. The campaign is now spreading throughout the country like a grass fire. However, such campaigns need considerable encouragement and support and the means for the desired development must be provided if the regional and sectoral development program is to sucdceed. The construction of large multipurpose dams in major river basin plays significant role in all aspects of national, regional and sectoral development. It ensures that the water resource, for which there is no substitute, is retained and utilized for irrigation of agricultural areas, production of power for industry, provision of water for domestic and industrial uses and control of river water. Water is the very essence of life and we must conserve and utilize what we have for the betterment of our peoples and their heir. The regional and social impact of construction of a large dam is enormous. It is intended to, and does, dras tically improve the "without-project" socio-economic conditions. A good example of this is the Soyanggang multipurpose dam. This project will significantly contribute to our national strength by utilizing the stored water for the benefit of human life and relief of flood and drought damages. Annual average precipitation in Korea is 1160mm, a comparatively abundant amount. The catchment areas of the Han River, Keum River, and Youngsan River are $62,755\textrm{km}^2$, accounting for 64% of the national total. Approximately 62% of the national population inhabits in this area, and 67% of the national gross product comes from the area. The annual population growth rate of the country is currently estimated at 1.7%, and every year the population growth in urban area increases at a rising rate. The population of Seoul, Pusan, and Taegu, the three major cities in Korea, is equal to one third of our national total. According to the census conducted on October 1, 1975, the population in the urban areas has increased by 384,000, whereas that in rural areas has decreased by 59,000,000 in the past five years. The composition of population between urban and rural areas varied from 41%~59% in 1959 to 48%~52% in 1975. To mitigate this treand towards concentration of population in urban areas, employment opportunities must be provided in regional and rural areas. However, heavy and chemical industries, which mitigate production and employment problems at the same time, must have abundant water and energy. Also increase in staple food production cannot be attained without water. At this point in time, when water demand is rapidly growing, it is essential for the country to provide as much a reservoir capacity as possible to capture the monsoon rainfall, which concentarated in the rainy seaon from June to Septesmber, and conserve the water for year round use. The floods, which at one time we called "the devil" have now become a source of immense benefit to Korea. Let me explain the topographic condition in Korea. In northern and eastern areas we have high mountains and rugged country. Our rivers originate in these mountains and flow in a general southerly or westerly direction throught ancient plains. These plains were formed by progressive deposition of sediments from the mountains and provide our country with large areas of fertile land, emminently suited to settlement and irrigated agricultural development. It is, therefore, quite natural that these areas should become the polar point for our regional development program. Hower, we are fortunate in that we have an additional area or areas, which can be used for agricultural production and settlement of our peoples, particularly those peoples who may be displaced by the formation of our reservoirs. I am speaking of the tidelands along the western and southern coasts. The other day the Ministry of Agriculture and Fishery informed the public of a tideland reclamation of which 400,000 hectares will be used for growing rice as part of our national food self-sufficiency programme. Now, again, we arrive at the need for water, as without it we cannot realize this ambitious programme. And again we need those dams to provide it. As I mentioned before, dams not only provide us with essential water for agriculture, domestic and industrial use, but provide us with electrical energy, as it is generally extremely economical to use the water being release for the former purposes to drive turbines and generators. At the present time we have 13 hydro-electric power plants with an installed capacity of 711,000 kilowatts equal to 16% of our national total. There are about 110 potential dams ites in the country, which could yield about 2,300,000 kilowatts of hydro-electric power. There are about 54 sites suitable for pumped storage which could produce a further 38,600,000 kilowatts of power. All available if we carefully develop our water resources. To summarize, water resource development is essential to the regional development program and the welfare of our people, it must proceed hand-in-hand with other aspects of regional development such as land impovement, high way extension, development of our forests, erosion control, and develop ment of heavy and chemical industries. Through the successful implementation of such an integrated regional development program, we can look forward to a period of national strength, and due recognition of our country by the worlds societies.

  • PDF

Jang(Fermented Soybean) in Official and Royal Documents in Chosun Dynasty Period (조선조의 공문서 및 왕실자료에 나타난 장류)

  • Ann, Yong-Geun
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.2
    • /
    • pp.368-382
    • /
    • 2012
  • This paper investigated the system that is relevant to Jang(fermented soybean paste or solution), the relief of hunger-stricken people by Jang, 33 kinds of Jang, and its consumption in the documents, such as the annals of the Chosun Dynasty, Ihlseong-document, Seungjeongwon daily, Uigwe(record of national ceremony), official documents on the basis of Kyujanggak institute for the Korean studies and data base of Korean classics. There are lots of Jang named after the place of particular soybean's production from the ancient times. Jang, soybean, salt and Meju(source of Jang), during the Dynasty, were collected as taxation or tribute. In the 5th year of Hyeonjong(1664), the storage amount of soybean in Hojo(ministry of finance) was 16,200 $k{\ell}$, and its consumption was 7,694 $k{\ell}$ a year. In the 32nd year of Yongjo(1756), the 1,800 $k{\ell}$ of soybean was distributed to the people at the time of disaster, and in his 36th year(1756), the 15,426 $k{\ell}$ of soybean was reduced from the soybean taxation nationwide. The offices managing Jang are Naejashi, Saseonseo, Sadoshi, Yebinshi and Bongsangshi. Chongyoongcheong(Gyeonggi military headquarters) stored the 175.14 $k{\ell}$ of Jang, and the 198 $k{\ell}$ of Jang in Yebinshi. There are such posts managing Jang as Jangsaek, Jangdoo, and Saseonsikjang. In the year of Jeongjong(1777~1800), the royal family distributed the 3.6 $k{\ell}$ of Meju to Gasoon-court, Hygyeong-court, queen's mother-court, queen's court, royal palace. The 13.41 $k{\ell}$ of Gamjang(fermented soybean solution) was distributed to the Gasoon-court, 17.23 $k{\ell}$ to Hegyeong-court, 17.09 $k{\ell}$ to the queen's mother-court, and the 17.17 $k{\ell}$ to the queen's court each. There are 112 Jang-storing pots in the royal storages, and the 690 are in Namhan-hill, where the 2.7 $k{\ell}$ of fermented Jang was made and brought back by them each year. At the time of starvation, Jang relieved the starving people. There are 20 occasions of big reliefs, according to the annals of the Chosun Dynasty. In the 5th year of Sejong(1423), the 360 $k{\ell}$ of Jang was given to the hunger-stricken people. In his 6th year(1424), the 8,512.92 $k{\ell}$ of rice, bean, and Jang was provided and in the 28th year(1446), the 8,322.68 $k{\ell}$ of Jang was also provided to them. In the Dynasty, Jang was given as a salary. In case that when they were bereaved, they didn't eat Jang patiently for its preservation. They were awarded for their filial piety. In the annals of the Chosun Dynasty, there are 19 kinds of Jang. They are listed in the order of Jang(108), Yeomjang(90), Maljang(11), Yookjang(5), Gamjang(4), and etc.,. In Seungjeongwon daily, there are 11 kinds of Jang. Jang(6), Cheongjang (5), Maljang(5), and Tojang(3) are listed in order. In the Ihlseong-document, there are 5 kinds of Jang. They are listed in Jang(15), Maljang(2), Gamjang(2), and etc.,. There are 13 kinds of Jang in Uigwe, and the official documents, in the order of Gamjang(59), Ganjang(37), Jang(28), Yeomjang(7), Maljang(6), and Cheongjang(5). In addition, shi are Jeonshi(7), and Dooshi(4). All these are made of only soybean except, for Yookjang. The most-frequently recorded Jang among anthology, cookbook, the annals of the Chosun Dynasty, Ihlseong-document, Seoungjeongwon daily, Uigwe, or official document is Jang(372), and then Yeomjang(194), Gamjang(73), Cheongjang(46), Ganjang(46), Soojang(33), and Maljang(26), which were made of soybean. Jang from China in cookbook is not in anthology and royal palace documents. Thus, traditional Jang made of soybean was used in the daily food life in the royal court, and in the public during the Chosun period.