• Title/Summary/Keyword: storage materials

Search Result 2,209, Processing Time 0.028 seconds

Effect of Film Packaging on Storage Life of Grape, Sheridan (Polyethylene Film포장이 포도 Sheridan의 저장력에 미치는 영향)

  • 남상영;김경미
    • Food Science and Preservation
    • /
    • v.4 no.1
    • /
    • pp.11-15
    • /
    • 1997
  • This experiment carried out to find the storage life according to the kinds of packaging material. Sheridan(Grape) which was fumigated SO2 were wrapped with polyethylenes(Bio-PE and PE) and stored at $0^{\circ}C$ under 90% RH modified condition. The resorts were summarized as follow. Natural weight loss was increased according to the storage time during the 135days storage that was only 1.0-1.7% in sealing section while 10% in non-sealing section. Abonrmal fruits were increased as the storage time was increased and it was 6.6-6.7% in sealing section while 100% in non-sealing during the 135days storage. Quality of appearance and taste are better in sealing section than non-sealing section and it was good in Bio-PE sealing section between packaging materials. Moistrue content was de creased as the storage range was increased and the decreasing rate of that during the storage was 4.9-5.2% in sealing section between treatments. During the storage range increased, the soluble solid degree was increased in non-sealing section but decreased in sealing section.

  • PDF

The Thermal and Optical Properties of Te-based Antireflection structure for Optical Recording (광기록을 위한 Te-based Antireflection구조의 열적, 광학적 특성)

  • Lee, S.J.;Lee, H.Y.;Chung, H.J.;Lee, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1256-1258
    • /
    • 1993
  • Optical data storage offer high density storage and archival storage capability. In this study, we selected the ablation mechanism-one of an irreversible recording system-using the antireflection trilayer(ART) structure. Optical recording medium is a $(Te_{86}Se_{14})_{50}Bi_{50}$ thin films. Actually, ART structure is fabricated and compared to monolayer structure. ART structure leads to the reduction of recording power as well as an increase in the effciency compared to the monolayer structure.

  • PDF

Study on Heat Transfer Characteristics of Screen Type Heat Storage Materials (집강형 축열재의 열전달 특성에 관한 연구)

  • Pak, Hi-Yong;Park, Woong-Ki
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 1981
  • Experimental results for convective heat transfer from a number of screen type heat storage materials, made of stainless steel and brass, were obtained by the use of the transient technique. The effects of the material, the size of mesh, and the number of screens. on the heat transfer coefficient could not be detectable A dimensionless correlation describing the convective heat transfer from the screen type heat storage materials is given in the range of Reynolds number between 60 and 1000.

  • PDF

Surface modification characteristics of activated carbon fibers for hydrogen storage (수소저장용 활성탄소섬유의 표면개질 특성)

  • Kim, Shin-Dong;Kim, Ju-Wan;Im, Ji-Sun;Cho, Se-Ho;Lee, Young-Seak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2006
  • Activated carbon fibers (ACFs) with high surface area and pore volume were modified with metal Ni impregnation and fluorination and investigated hydrogen storage properties by volumetric method. Micropore volume values of ACFs obtained from surface modification with Ni impregnation and fluorination were decreased 9 and 35 %, respectively. Hydrogen storage capacities of fluorinated ACFs were slightly changed, on the other hand, that of Ni impregnated ACF was considerably increased. It means that hydrogen was not only adsorbed on ACF surface, but also on Ni metal surface by means of dissociation. Although the microphone volume of ACF modified with fluorination was decreased, its hydrogen storage were found not to be changed compared with fresh ACF. These results indicated that the surface of ACF after fluorination modification may be strongly attracted hydrogen due to high electronegativity of fluorine. Therefore, it was proven that hydrogen storage capacity was related with micropore volume and surface property of carbon materials as well as specific surface area.

Damage Monitoring of Concrete With Acoustic Emission Method for Nuclear Waste Storage: Effect of Temperature and Water Immersion

  • Park, June-Ho;Kwon, Tae-Hyuk;Han, Gyeol;Kim, Jin-Seop;Hong, Chang-Ho;Lee, Hang-Lo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.297-306
    • /
    • 2022
  • The acoustic emission (AE) is proposed as a feasible method for the real-time monitoring of the structural damage evolution in concrete materials that are typically used in the storage of nuclear wastes. However, the characteristics of AE signals emitted from concrete structures subjected to various environmental conditions are poorly identified. Therefore, this study examines the AE characteristics of the concrete structures during uniaxial compression, where the storage temperature and immersion conditions of the concrete specimens varied from 15℃ to 75℃ and from completely dry to water-immersion, respectively. Compared with the dry specimens, the water-immersed specimens exhibited significantly reduced uniaxial compressive strengths by approximately 26%, total AE energy by approximately 90%, and max RA value by approximately 70%. As the treatment temperature increased, the strength and AE parameters, such as AE count, AE energy, and RA value, of the dry specimens increased; however, the temperature effect was only minimal for the immersed specimens. This study suggests that the AE technique can capture the mechanical damage evolution of concrete materials, but their AE characteristics can vary with respect to the storage conditions.

Dielectric, Ferroelectric, Energy Storage, and Pyroelectric Properties of Mn-Doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 Anti-Ferroelectric Ceramics

  • Kumar, Ajeet;Yoon, Jang Yuel;Thakre, Atul;Peddigari, Mahesh;Jeong, Dae-Yong;Kong, Young-Min;Ryu, Jungho
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.412-420
    • /
    • 2019
  • In this study, the dielectric and polarization properties of manganese (Mn% = 0.0, 0.1, 0.2, 0.5) doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 (PLZT 7/82/18) anti-ferroelectric ceramics were studied for energy storage capacitor and pyroelectric applications. A systematic investigation demonstrated that the electric properties of PLZT 7/82/18 ceramics are affected significantly by the Mn-doping content. A maximum dielectric constant of ~ 2,128 at 1 kHz was found for 0.1% Mn-doped PLZT ceramics with a low dielectric loss of 0.018. The bipolar polarization versus electric field (P-E) hysteresis loops were traced for all compositions showing a typical anti-ferroelectric nature. The breakdown field was found to decrease with Mn-doping. The energy storage density and efficiency were found to be 460 J/㎤ and ~ 63%, respectively, for 0.2% Mn-doped PLZT ceramics. The pyroelectric coefficient of PLZT ceramics shows an increase based on the amount of Mn-doping.

The Microbiological Quality Estimation of Samul Chol-Pyon during the Storage (사물절편의 미생물학적 품질안전성)

  • 김윤선;박춘란
    • Korean journal of food and cookery science
    • /
    • v.18 no.5
    • /
    • pp.516-521
    • /
    • 2002
  • This study was investigated to prove the relation between the ingredient of Samul Chol-Pyon and its microorganism pollution level during the storage. As a result, the pollution degree in total aerobic bacteria, yeast, mold, and colitis germs of rice power turned out to have a lower one than the oriental medicine materials do. In case of preserved write Chol-Pyon, the total aerobic bacteria pollution level was 8.8 $\times$ 10$^3$CFU/g the highest degree among other ones in their among other ones in their early pollution levels and in the oriental medicine materials, the pollution level was degreased as its annex increased. Moreover, yeast propagated fast in its first day of storage, but mold grew somewhat slowly than yeast and total aerobic bacteria did. In every case, the range of colitis germs growth was between 10$^2$-10$^3$CFU/g and it was similar to the each one of total aerobic bacteria, yeast, and molds. On its third day of storage, the pollution level of mold showed 10$^4$-10$\^$5/CFU/g.

Hydrogen Storage Properties of Carbon Nanotube Composites (탄소나노튜브 복합재의 수소저장특성)

  • Ahn, Jung-Ho;Jang, Min-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.188-195
    • /
    • 2008
  • Carbon nanotube (CNT)/$Mg_2Ni$ composites were synthesized to enhance the hydrogen storage properties. The emphasis was made on the effect of different shortening methods of CNTs on the open-tip structure and the resulting properties. The use of open CNTs as a starting material resulted in an enhanced hydrogen properties of CNT/$Mg_2Ni$ composites. Among the employed methods for the shortening of CNTs, wet milling using ethanol was the most efficient, while ultrasonic acid treatment or thermal decomposition resulted in a less hydrogen storage capacity.

Thermodynamic performance of 2-PCM latent heat thermal energy storage system (2-PCM 잠열축열 시스템의 열역학적 성능)

  • 이세균;우정선;이재효;김한덕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.189-199
    • /
    • 2000
  • This paper investigates the thermodynamic performance of latent heat thermal energy storage system using two phase change materials(2-PCM system). The thermodynamic merit of using 2-PCM is clear in terms of exergetic efficiency, which is substantially higher than that of 1-PCM system. Optimum phase change temperature to maximize the exergetic efficiency exists for each case. The heat transfer area ratio of high temperature storage unit, X, becomes another important parameter for 2-PCM system if the phase change temperatures of given materials are different from those of optimum conditions. It is a good approximation for X$_{opt}$ to be 0.5 when optimum phase change temperatures are used. Otherwise X$_{opt}$ is determined differently as a function of given phase change temperatures.res.

  • PDF