• 제목/요약/키워드: storage feature-based

검색결과 104건 처리시간 0.028초

Storage Feature-Based Watermarking Algorithm with Coordinate Values Preservation for Vector Line Data

  • Zhou, Qifei;Ren, Na;Zhu, Changqing;Tong, Deyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3475-3496
    • /
    • 2018
  • Most of current watermarking algorithms for GIS vector data embed copyright information by means of modifying the coordinate values, which will do harm to its quality and accuracy. To preserve the fidelity of vector line data and protect its copyright at the same time, a lossless watermarking algorithm is proposed based on storage feature in this paper. Firstly, the superiority of embedding watermark based on storage feature is demonstrated theoretically and technically. Then, the basic concepts and operations on storage feature have been defined including length and angle of the polyline feature. In the process of embedding watermark, the watermark information is embedded into directions of polyline feature by the quantitative mechanism, while the positions of embedding watermark are determined by the feature length. Hence, the watermark can be extracted by the same geometric features without original data or watermark. Finally, experiments have been conducted to show that coordinate values remain unchanged after embedding watermark. Moreover, experimental results are presented to illustrate the effectiveness of the method.

A STORAGE AND RETRIEVAL SYSTEM FOR LARGE COLLECTIONS OF REMOTE SENSING IMAGES

  • Kwak Nohyun;Chung Chin-Wan;Park Ho-hyun;Lee Seok-Lyong;Kim Sang-Hee
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.763-765
    • /
    • 2005
  • In the area of remote sensing, an immense number of images are continuously generated by various remote sensing systems. These images must then be managed by a database system efficient storage and retrieval. There are many types of image database systems, among which the content-based image retrieval (CBIR) system is the most advanced. CBIR utilizes the metadata of images including the feature data for indexing and searching images. Therefore, the performance of image retrieval is significantly affected by the storage method of the image metadata. There are many features of images such as color, texture, and shape. We mainly consider the shape feature because shape can be identified in any remote sensing while color does not always necessarily appear in some remote sensing. In this paper, we propose a metadata representation and storage method for image search based on shape features. First, we extend MPEG-7 to describe the shape features which are not defined in the MPEG-7 standard. Second, we design a storage schema for storing images and their metadata in a relational database system. Then, we propose an efficient storage method for managing the shape feature data using a Wavelet technique. Finally, we provide the performance results of our proposed storage method.

  • PDF

LPCA에 기반한 GMM을 이용한 화자 식별 (Speaker Identification Using GMM Based on LPCA)

  • 서창우;이윤정;이기용
    • 음성과학
    • /
    • 제12권2호
    • /
    • pp.171-182
    • /
    • 2005
  • An efficient GMM (Gaussian mixture modeling) method based on LPCA (local principal component analysis) with VQ (vector quantization) for speaker identification is proposed. To reduce the dimension and correlation of the feature vector, this paper proposes a speaker identification method based on principal component analysis. The proposed method firstly partitions the data space into several disjoint regions by VQ, and then performs PCA in each region. Finally, the GMM for the speaker is obtained from the transformed feature vectors in each region. Compared to the conventional GMM method with diagonal covariance matrix, the proposed method requires less storage and complexity while maintaining the same performance requires less storage and shows faster results.

  • PDF

커버곡 검색을 위한 코드 기반 크로마그램 유사도 (A code-based chromagram similarity for cover song identification)

  • 서진수
    • 한국음향학회지
    • /
    • 제38권3호
    • /
    • pp.314-319
    • /
    • 2019
  • 음악 커버곡 검색 시스템 구현에 있어서 크로마그램 간 유사도 계산은 필수적인 구성 요소이다. 본 논문은 크로마그램 비교에 소요되는 저장공간 및 계산량을 줄이기 위한 크로마그램 코딩 방법을 제안한다. 음악별로 코드북을 학습하여 크로마그램 수열을 코드 수열로 변환하여 저장 공간을 줄이게 된다. 얻어진 코드 간 거리를 룩업 테이블에 저장하여 크로마그램 비교의 속도를 개선하였다. 두 가지 커버곡 실험 데이터셋에서 성능 비교를 수행하여, 제안된 코드 기반 방법과 기존 방법 간의 커버곡 검색 정확도, 저장 공간, 계산량을 비교하였다.

국부 퍼지 클러스터링 PCA를 갖는 GMM을 이용한 화자 식별 (Speaker Identification Using GMM Based on Local Fuzzy PCA)

  • 이기용
    • 음성과학
    • /
    • 제10권4호
    • /
    • pp.159-166
    • /
    • 2003
  • To reduce the high dimensionality required for training of feature vectors in speaker identification, we propose an efficient GMM based on local PCA with Fuzzy clustering. The proposed method firstly partitions the data space into several disjoint clusters by fuzzy clustering, and then performs PCA using the fuzzy covariance matrix in each cluster. Finally, the GMM for speaker is obtained from the transformed feature vectors with reduced dimension in each cluster. Compared to the conventional GMM with diagonal covariance matrix, the proposed method needs less storage and shows faster result, under the same performance.

  • PDF

Vector Map Simplification Using Poyline Curvature

  • Pham, Ngoc-Giao;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Multimedia Information System
    • /
    • 제4권4호
    • /
    • pp.249-254
    • /
    • 2017
  • Digital vector maps must be compressed effectively for transmission or storage in Web GIS (geographic information system) and mobile GIS applications. This paper presents a polyline compression method that consists of polyline feature-based hybrid simplification and second derivative-based data compression. Experimental results verify that our method has higher simplification and compression efficiency than conventional methods and produces good quality compressed maps.

엔트로피를 기반으로 한 특징 집합 선택 알고리즘 (Feature Subset Selection Algorithm based on Entropy)

  • 홍석미;안종일;정태충
    • 전자공학회논문지CI
    • /
    • 제41권2호
    • /
    • pp.87-94
    • /
    • 2004
  • 특징 집합 선택은 학습 알고리즘의 전처리 과정으로 사용되기도 한다. 수집된 자료가 문제와 관련이 없다거나 중복된 정보를 갖고 있는 경우, 이를 학습 모델생성 이전에 제거함으로써 학습의 성능을 향상시킬 수 있다. 또한 탐색 공간을 감소시킬 수 있으며 저장 공간도 줄일 수 있다. 본 논문에서는 특징 집합의 추출과 추출된 특징 집합의 성능 평가를 위하여 엔트로피를 기반으로 한 휴리스틱 함수를 사용하는 새로운 특징 선택 알고리즘을 제안하였다. 탐색 방법으로는 ACS 알고리즘을 이용하였다. 그 결과 학습에 사용될 특징의 차원을 감소시킴으로써 학습 모델의 크기와 불필요한 계산 시간을 감소시킬 수 있었다.

화자식별을 위한 전역 공분산에 기반한 주성분분석 (Global Covariance based Principal Component Analysis for Speaker Identification)

  • 서창우;임영환
    • 말소리와 음성과학
    • /
    • 제1권1호
    • /
    • pp.69-73
    • /
    • 2009
  • This paper proposes an efficient global covariance-based principal component analysis (GCPCA) for speaker identification. Principal component analysis (PCA) is a feature extraction method which reduces the dimension of the feature vectors and the correlation among the feature vectors by projecting the original feature space into a small subspace through a transformation. However, it requires a larger amount of training data when performing PCA to find the eigenvalue and eigenvector matrix using the full covariance matrix by each speaker. The proposed method first calculates the global covariance matrix using training data of all speakers. It then finds the eigenvalue matrix and the corresponding eigenvector matrix from the global covariance matrix. Compared to conventional PCA and Gaussian mixture model (GMM) methods, the proposed method shows better performance while requiring less storage space and complexity in speaker identification.

  • PDF

Massive Music Resources Retrieval Method Based on Ant Colony Algorithm

  • Yun Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1208-1222
    • /
    • 2024
  • Music resources are characterized by quantization, diversification and complication. With the rapid increase of the demand for music resources, the storage of music resources is very large. In order to improve the retrieval effect of music resources, a massive music resources retrieval method based on ant colony algorithm is proposed to effectively use music resources. This paper constructs autocorrelation function to extract pitch feature of music resource, classifies the music resource information by calculating feature similarity. Using ant colony algorithm to correlate the feature of music resource, gain the result of correlative, locate the result of detection and get the result of multi-module. Simulation results show that the proposed method has high precision and recall, short retrieval time and can effectively retrieve massive music resources.

Image Deduplication Based on Hashing and Clustering in Cloud Storage

  • Chen, Lu;Xiang, Feng;Sun, Zhixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1448-1463
    • /
    • 2021
  • With the continuous development of cloud storage, plenty of redundant data exists in cloud storage, especially multimedia data such as images and videos. Data deduplication is a data reduction technology that significantly reduces storage requirements and increases bandwidth efficiency. To ensure data security, users typically encrypt data before uploading it. However, there is a contradiction between data encryption and deduplication. Existing deduplication methods for regular files cannot be applied to image deduplication because images need to be detected based on visual content. In this paper, we propose a secure image deduplication scheme based on hashing and clustering, which combines a novel perceptual hash algorithm based on Local Binary Pattern. In this scheme, the hash value of the image is used as the fingerprint to perform deduplication, and the image is transmitted in an encrypted form. Images are clustered to reduce the time complexity of deduplication. The proposed scheme can ensure the security of images and improve deduplication accuracy. The comparison with other image deduplication schemes demonstrates that our scheme has somewhat better performance.