Speaker Identification Using GMM Based on LPCA

LPCA에 기반한 GMM을 이용한 화자 식별

  • 서창우 ((주)인스모바일 기술연구소) ;
  • 이윤정 (숭실대학교 정보통신공학과) ;
  • 이기용 (숭실대학교 정보통신공학과)
  • Published : 2005.06.01

Abstract

An efficient GMM (Gaussian mixture modeling) method based on LPCA (local principal component analysis) with VQ (vector quantization) for speaker identification is proposed. To reduce the dimension and correlation of the feature vector, this paper proposes a speaker identification method based on principal component analysis. The proposed method firstly partitions the data space into several disjoint regions by VQ, and then performs PCA in each region. Finally, the GMM for the speaker is obtained from the transformed feature vectors in each region. Compared to the conventional GMM method with diagonal covariance matrix, the proposed method requires less storage and complexity while maintaining the same performance requires less storage and shows faster results.

Keywords