• Title/Summary/Keyword: storage channel

Search Result 290, Processing Time 0.025 seconds

Development of Xenon Feed System for a Hall-Effect Thruster to Space-propulsion Applications (우주추진용 홀방식의 전기추력기를 위한 제논연료공급장치 개발)

  • Kim, Youn-Ho;Kang, Seong-Min;Jung, Yun-Hwang;Seon, Jong-Ho;Wee, Jung-Hyun;Yoon, Ho-Sung;Choe, Won-Ho;Lee, Jong-Sub;Seo, Mi-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.84-89
    • /
    • 2011
  • A Xenon Feed System (XFS) has been developed for hall-effect thruster to small satellite space-propulsion system applications. The XFS delivers low pressure gas to the Anode and Cathode of thruster head unit from a xenon storage tank. Accurate throttling of the propellant mass flow rate is independently required for each channel of the thruster head unit. The mass flow rate to each channel is controlled using the accumulator tank pressure regulation through a micron orifice and isolation valve. This paper discusses the Xenon Feed System design including the component selections, performance estimation and functional test.

A Runoff Model based on the Stream Magnitude (수로망(水路綱)크기를 이용한 유출모형(流出模型))

  • Lee, Won Hwan;Jun, Min Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.83-90
    • /
    • 1989
  • A runoff model was estabilished for the direct runoff hydrograph at each subareas by obtaining the storage coefficient based on stream magnitudes of geomorphic parameters. For this, the relationship between flowsection and channel distance from the outlet of each subareas was assumed as nonlinear equation, and compared with linear one. The applicability of the runoff model to the real watershed was tested for the Bochung river basin. The results of the analysis show that the model was approved to be used for the prediction of small watershed having no runoff records and a linear equation between flowsection and channel distance from the outlet of each subareas was more similar to the observed data for the upper subarea with a steep slope and small area, on the other hand, nonlinear equation for the lower subarea with mild slope and relatively large area.

  • PDF

Experimental Study of Interfacial Friction in NaBH4 Solution in Microchannel Dehydrogenation Reactor (마이크로채널 탈수소 화학반응기에서 수소화붕소나트륨 수용액의 계면마찰에 대한 실험연구)

  • Choi, Seok Hyun;Hwang, Sueng Sik;Lee, Hee Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.139-146
    • /
    • 2014
  • Sodium borohydride ($NaBH_4$) is considered as a secure metal hydride for hydrogen storage and supply. In this study, the interfacial friction of two-phase flow in the dehydrogenation of aqueous $NaBH_4$ solution in a microchannel with a hydraulic diameter of $461{\mu}m$ is investigated for designing a dehydrogenation chemical reactor flow passage. Because hydrogen gas is generated by the hydrolysis of $NaBH_4$ in the presence of a ruthenium catalyst, two different flow phases (aqueous $NaBH_4$ solution and hydrogen gas) exist in the channel. For experimental studies, a microchannel was fabricated on a silicon wafer substrate, and 100-nm ruthenium catalyst was deposited on three sides of the channel surface. A bubbly flow pattern was observed. The experimental results indicate that the two-phase multiplier increases linearly with the void fraction, which depends on the initial concentration, reaction rate, and flow residence time.

Implementation of Cell Voltage Monitoring System for Monitoring Multi-channel Battery (고속 다채널 배터리 모니터링을 위한 CVM 시스템의 구현)

  • Lee, Kyung-Ryang;Cho, Seung-Il;Yeon, In-Chol;Kim, Seong-Kweon
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.15-19
    • /
    • 2013
  • Lithium-ion batteries have been used for high density energy storage system due to the features such as low self-discharge rate. And the unit cell battery with the voltage less than 4V is recommended to use the series connections for a high voltage charger. When batteries are charged or discharged with series connection, there may be an explosion or degradation of unit cell battery owing to undistributed internal resistance of cell battery. therefore, the voltages of unit cell batteries should be monitored to prevent an overcharging and a deep discharging. This paper introduces the implementation of CVM (Cell Voltage Monitoring) system that can transmit the 12 channel's information including voltages and temperatures with the 12-bits resolutions and the transmission speed of 192 kbps.

Ultra-Low Powered CNT Synaptic Transistor Utilizing Double PI:PCBM Dielectric Layers (더블 PI:PCBM 유전체 층 기반의 초 저전력 CNT 시냅틱 트랜지스터)

  • Kim, Yonghun;Cho, Byungjin
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.590-596
    • /
    • 2017
  • We demonstrated a CNT synaptic transistor by integrating 6,6-phenyl-C61 butyric acid methyl ester(PCBM) molecules as charge storage molecules in a polyimide(PI) dielectric layer with carbon nanotubes(CNTs) for the transistor channel. Specifically, we fabricated and compared three different kinds of CNT-based synaptic transistors: a control device with $Al_2O_3/PI$, a single PCBM device with $Al_2O_3/PI:PCBM$(0.1 wt%), and a double PCBM device with $Al_2O_3/PI:PCBM$(0.1 wt%)/PI:PCBM(0.05 wt%). Statistically, essential device parameters such as Off and On currents, On/Off ratio, device yield, and long-term retention stability for the three kinds of transistor devices were extracted and compared. Notably, the double PCBM device exhibited the most excellent memory transistor behavior. Pulse response properties with postsynaptic dynamic current were also evaluated. Among all of the testing devices, double PCBM device consumed such low power for stand-by and its peak current ratio was so large that the postsynaptic current was also reliably and repeatedly generated. Postsynaptic hole currents through the CNT channel can be generated by electrons trapped in the PCBM molecules and last for a relatively short time(~ hundreds of msec). Under one certain testing configuration, the electrons trapped in the PCBM can also be preserved in a nonvolatile manner for a long-term period. Its integrated platform with extremely low stand-by power should pave a promising road toward next-generation neuromorphic systems, which would emulate the brain power of 20 W.

Massive Terrain Rendering Method Using RGBA Channel Indexing of Wavelet Coefficients (웨이블릿 압축 계수의 RGBA채널 인덱싱을 이용한 대용량 지형 렌더링 기법)

  • Kim, Tae-Gwon;Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.13 no.5
    • /
    • pp.55-62
    • /
    • 2013
  • Since large terrain data can not be loaded on the GPU or CPU memory at once, out-of-core methods which read necessary part from the secondary storage such as a hard disk are commonly used. However, long delay may occur due to limited bandwidth while loading the data from the hard disk to memory. We propose efficient rendering method of large terrain data, which compresses the data with wavelet technique and save its coefficients in RGBA channel of an image us, then decompresses that in rendering stage. Entire process is performed in GPU using Direct Compute. By reducing the amount of data transfer, performing wavelet computations in parallel and doing decompression quickly on the GPU, our method can reduce rendering time effectively.

Analysis of the MSC(Multi-Spectral Camera) Operational Parameters

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • The MSC is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a GSD(Ground Sample Distance) of 1 m over the entire FOV(Field Of View) at altitude 685 km. The instrument is designed to haute an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The MSC instrument has one channel for panchromatic imaging and four channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI(Time Belayed Integration) CCD(Charge Coupled Device) FPA(Focal Plane Assembly). The MSC hardware consists of three subsystem, EOS(Electro Optic camera Subsystem), PMU(Payload Management Unit) and PDTS(Payload Data Transmission Subsystem) and each subsystems are currently under development and will be integrated and verified through functional and space environment tests. Final verified MSC will be delivered to spacecraft bus for AIT(Assembly, Integration and Test) and then COMSAT-2 satellite will be launched after verification process through IST(Integrated Satellite Test). In this paper, the introduction of MSC, the configuration of MSC electronics including electrical interlace and design of CEU(Camera Electronic Unit) in EOS are described. MSC Operation parameters induced from the operation concept are discussed and analyzed to find the influence of system for on-orbit operation in future.

New Efficient Scalar Multiplication Algorithms Based on Montgomery Ladder Method for Elliptic Curve Cryptosystems (타원곡선암호시스템에서 Montgomery ladder 방법에 기반한 새로운 스칼라 곱셈 알고리즘)

  • Cho, Sung-Min;Seo, Seog-Chung;Kim, Tae-Hyun;Park, Yung-Ho;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.4
    • /
    • pp.3-19
    • /
    • 2009
  • This paper proposes efficient scalar multiplication algorithms based on Montgomery ladder method. The proposed algorithm represents the scalar as ternary or quaternary and applies new composite formulas utilizing only x coordinate on affine coordinate system in order to improve performance. Furthermore, side-channel atomicity mechanism is applied on the proposed composite formulas to prevent simple power analysis. The proposed methods saves at least 26% of running time with the reduced number of storage compared with existing algorithms such as window-based methods and comb-based methods.

The Role of Vanadium Complexes with Glyme Ligands in Suppressing Vanadium Crossover for Vanadium Redox Flow Batteries

  • Jungho Lee;Jingyu Park;Kwang-Ho Ha;Hyeonseok Moon;Eun Ji Joo;Kyu Tae Lee
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.152-161
    • /
    • 2023
  • Vanadium redox flow batteries (VRFBs) have been considered one of promising power sources for large scale energy storage systems (ESS) because of their excellent cycle performance and good safety. However, VRFBs still have a few challenging issues, such as poor Coulombic efficiency due to vanadium crossover between catholyte and anolyte, although recent efforts have shown promise in electrochemical performance. Herein, the vanadium complexes with various glyme ligands have been examined as active materials to suppress vanadium crossover between catholyte and anolyte, thus improving the Coulombic efficiency of VRFBs. The conventional Nafion membrane has a channel size of ca. 10 Å, whereas vanadium cation species are small compared to the Nafion membrane channel. For this reason, vanadium cations can permeate through the Nafion membrane, resulting in significant vanadium crossover during cycling, although the Nafion membrane is a kind of ion-selective membrane. In this regard, various glyme additives, such as 1,2-dimethoxyethane (monoglyme), diethylene glycol dimethyl ether (diglyme), and tetraethylene glycol dimethyl ether (tetraglyme) have been examined as complexing agents for vanadium cations to increase the size of vanadium-ligand complexes in electrolytes. Since the size of vanadium-glyme complexes is proportional to the chain length of glymes, the vanadium permeability of the Nafion membrane decreases with increasing the chain length of glymes. As a result, the vanadium complexes with tetraglyme shows the excellent electrochemical performance of VRFBs, such as stable capacity retention (90.4% after 100 cycles) and high Coulombic efficiency (98.2% over 100 cycles).

Dynamic Copy Security Protocol In Real-Time Database Systems (실시간 데이터베이스 시스템에서의 동적 복사 보안 프로토콜)

  • Park, Su-Yeon;Lee, Seung-Ryong;Jeong, Byeong-Su;Seung, Hyeon-U
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.955-963
    • /
    • 1999
  • 다단계 보안 실시간 데이타베이스 시스템은 데이타베이스의 일관성 유지와 실시간 요구인 마감시간의 만족, 그리고 기밀성을 띤 데이타가 노출될 수 있는 비밀채널(covert-channel)의 방지라는 요구사항을 모두 만족해야 한다. 기존의 SRT-2PL(Secure Real-Time 2 Phase Locking)은 원본과 복사본으로 데이타 객체를 분리시켜 다른 등급간에 불간섭(non-interference)을 유지하여 비밀채널의 방지를 가능하게 하였으나, 복사본이 모든 데이타 객체에 대해 항상 존재하므로 메모리의 낭비가 있을 수 있고, 복사본의 갱신을 위한 갱신 큐의 관리에 따르는 오버헤드와 그에 따른 예측성 결여라는 문제점을 갖고 있다. 이를 개선하기 위하여 본 논문에서는 다단계 보안 실시간 데이타베이스 시스템의 요구사항을 모두 만족하는 동적 복사 프로토콜을 제안한다. 동적 복사 프로토콜은 로킹 기법을 기초로 동작하고, 트랜잭션의 작업에 따라 동적으로 복사본을 생성하고 삭제한다. 모의 실험 결과 제안한 동적 복사 프로토콜은 비밀채널을 방지하고 동적인 복사본의 생성으로 SRT-2PL의 단점인 메모리 낭비를 줄일 수 있으며, 예측성을 높여 마감시간 오류율을 감소시켰다.Abstract Concurrency control of real-time secure database system must satisfy not only logical data consistency but also timing constraints and security requirements associated with transactions. These conflicting natures between timing constraints and security requirements are often resolved by maintaining several versions(or secondary copies) on the same data items. In this paper, we propose a new lock-based concurrency control protocol, Dynamic Copy Security Protocol, ensuring both two conflicting requirements. Our protocol aims for reducing the storage overhead of maintaining secondary copies and minimizing the processing overhead of update history. Main idea of our protocol is to keep a secondary copy only when it is needed to resolve the conflicting read/write operations in real time secure database systems. For doing this, a secondary copy is dynamically created and removed during a transaction's read/write operations according to our protocol. We have also examined the performance characteristics of our protocol through simulation under different workloads while comparing the existing real time security protocol. The results show that our protocol consumed less storage and decreased the missing deadline transactions.