• Title/Summary/Keyword: stone pagodas

Search Result 78, Processing Time 0.022 seconds

A study on the structure of the Three storied Stone pagoda in Gameunsa Temple site. (감은사지 삼층석탑 구조에 관한 연구)

  • Nam, Si-Jin
    • Journal of architectural history
    • /
    • v.17 no.3
    • /
    • pp.7-21
    • /
    • 2008
  • Three-story Stone pagodas in Gameunsa Temple site, one of the early staged stone pagodas, has been known as a standard of Silla stone pagodas. A stone pagoda is not only a stone art work and but also a stone architecture. In understanding the stone pagoda it is very important to be approached with technological side in which we can investigate the stone pagoda deeply and as well as to have been approached with art historical view. Also it needs that we should see the stone pagoda in view of structural safety. We can get many high technique from our ancestors who made Gameunsajiseoktap. 1. To reduce any deformation such as relaxation and sinking of members which is caused by a heavy load the members such as the lower tier of the base is made up of the foundation stone and side stone in each, comprising one stone. 2. A special construction method for connection between wall stone and column stone in stereobates was invented. It is to make column stone projected partially and wall stone be caved in that two members should be jointed well. This unique method is not used any longer after the three-story Stone pagodas in Gameunsa Temple Site. 3. In each side upper and lower member are not engaged as the size of roof stones and support stones of roof stones are different. It can be done for a distribution of perpendicular load and a prevention for relaxation of members. 4. It makes sure that to make upper ends of support stones 10mm lower was to be avoid upper loads to it judging from survey in disassemblying east pagoda. It proves that ancestors who made this stone pagoda had a technique to understand the structural matters to make small members as big as possible, not to engage in joint, to avoid in ends of members from upper load.

  • PDF

A Study on the Role and Transition of the Tapgu in Stone Pagoda (석탑 탑구(塔區)의 역할 및 변천에 관한 연구)

  • Chung, Hae-Doo;Jang, Suk-Ha
    • Journal of architectural history
    • /
    • v.19 no.1
    • /
    • pp.91-104
    • /
    • 2010
  • Korea's stone buildings are varied in their types such as stone pagodas, stone lanterns, stone bridges, stoneworks, etc. These account for more than 30% over the entire cultural properties, but research achievements are lacking compared to wooden buildings. Accordingly, this study aims to identify the shape, role and transition of Tapgu, which had been used to set up boundary at a stone pagoda, one of the stone buildings. The 20th stone pagodas, which have relative accuracy in its forming year, have been studied around national treasure or treasure between 7th century and 9th century. There are a lot of different opinions about the role and meaning of Tapgu, and at this writer's option, Tapgu is defined as follows: First, each structure plays a different role. A structure to pass the load in the upper part to the ground can be seen as a stair or a pedestal, but a structure to form double foundations can be considered as Tapgu. Second, Tapgu can be used to divide areas with stones or stepping stones. As a result, the shape, role and transition of Tapgu is as follows: Firstly, when it comes to its shape, Tapgu includes flagstone type, belt type, double foundation type, compound type. Flagstone type had been used to set up boundary at stone pagodas by using foundation stone, belt type by keeping apart from stone pagodas, and double foundation stone by installing dual foundation stones. Secondly, Tapgu is considered to set up boundary in the case of flagstone and plate stone, and acts like a structure which can prevent surrounding area of stone pagoda from coming up while being stuck around stone pagodas. Belt type was installed only for the purpose of forming boundary. At the bottom, double foundation stone had been used to pass the load in the upper part to the ground in the same way as the foundation stone in the upper part, and the boundaries were set varying the size. Thirdly, when it comes to the transition of Tapgu, flagstone type of boundary stone had been installed in the 7th century, and belt type of boundary stone had been mainly installed in the 8th century. And double foundation stone had been installed in the 9th century. Comprehensively, flagstone type and belt type had been made around the 7th and 8th century when Tapgu was regarded important and stone pagoda started to be built. At the turn to the 9th century, the role of Tapgu had been increasingly losing in the construction of stone pagoda, and foundation stone started to appear.

A Study on the Architectural Structure of Ancient Korean Wooden Buildings - Focused on the Analysis of the Architectural Elements of Stone Pagoads - (한국(韓國) 고대(古代) 대조건축(大造建築) 구조(構造)의 추정(推定)에 관(關)한 연구(硏究) -석탑(石塔)의 건축요소(建築要素) 분석(分析)을 중심(中心)으로-)

  • Park, Jae-pyoung;Lee, Jae-heun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.4 no.1
    • /
    • pp.71-86
    • /
    • 2002
  • This research aims to illustrate the structure of the ancient Korean wooden buildings by a comparative study of the historical resources such as stone remains, wall paintings historiographies and excavations. As stone pagodas are the most typical stone remains, I selected for analysis some stone pagodas which contain architectural elements and results of the study are as follows: 1) The number of stories and structural modes of the base stone part show the wooden architectural aspects: they have one or two stories and their base part is constructed in the mode of assembling rectangular stones. 2) The body of the pagoda contains such architectural elements as pillars, door and windows, crossbeams, balcony, bracket sets. 3) The roof of the stone pagoda contains such architectural elements as eaves, roofs and modes of stone assembling. The results inferred through this research could be of help for further comparative studies with the other secondary materials by providing basic knowledge for it.

  • PDF

A Study of the Three-story Stone Pagodas in Hyeon-ri and Hwacheon-ri, Yeongyang - Focusing on Analysis of the Pagoda Reliefs - (영양 현리와 화천리 삼층석탑 연구 - 탑부조상(塔浮彫像)의 도상 분석을 중심으로 -)

  • Han, Jaewon
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.250-273
    • /
    • 2020
  • The three-story stone pagodas in Hyeon-ri and Hwacheon-ri,Yeongyang Gyeongsangbuk-do are stone pagodas that exhibit the typical style of Unified Silla. The two pagodas are believed to have been built in the mid- and late 9th centuries at the latest, considering the style of the three-story roof stone on top of the double-tier base. This is also confirmed by the reliefs carved at the base and the first-story of the pagoda. The Four Heavenly Kings and the Twelve Zodiacal Animal Deities were first combined in the late 8th century in the stone pagoda at the Wonwonsa Temple Site, and the Eight Classes of Divine Beings was also the most popular carved pagoda reliefs in the 9th century. However, the two Yeongyang stone pagodas are characterized by a combination of the Four Heavenly Kings (1st story), the Eight Classes (top base), and the Twelve Zodiacal Animals (lower base), and the stone used for the pagoda consists of sedimentary rocks of the sandstone family, which comprise most of the geological strata in the Yeongyang area, rather than ordinary granite. The new combinations of the three types of guardian deities and the Eight Classes changed from seated to standing poses is interpreted as an attempt to enhance the Buddhist faith and cultural status of the Yeongyang area, along with the fact that the stone pagoda was built using local natural materials. The Eight Classes of the Yeongyang stone pagoda does not follow the two types of arrangement of the pagodas with the Eight Classes, but some of the deities have been relocated to a new location. Composed of AsuraGandharva on the east side, Naga-Mahoraga on the south, Deva-Garuda on the west, and Kimnara-Yaksa on the north, this form can be classified as a unique 'third layout of the Eight Classes' in the Yeongyang area. Such changes in the shape and posture of the reliefs reflect a new perception of the pagodas. The reason why the Gandharva and Yaksa statues were carved on the east and north sides, respectively, was because they were deemed subordinate to the Four Heavenly Kings, and the fact that the Naga and the Mahoraga were carved on the south side was presumed to have influenced the geographical location of the two pagodas on the northern side of Banbyeoncheon Stream. The Hyeon-ri and Hwacheon-ri three-story stone pagodas inherited the tradition of typical Unified Silla-period pagodas, while also bearing their own new regional characteristics.

Effects of Seawater and Air Pollutants on Stone Cultural Properties: Three-Story Stone Pagodas in Gameunsa Temple Site (해수와 대기오염물질이 석조문화재에 미치는 영향: 감은사지 삼층석탑을 중심으로)

  • Jung, Jong-Hyeon;Shon, Byung-Hyun;Jung, Min-Ho;Leem, Heon-Ho;Kim, Kyung-Won;Kim, Hyun-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.325-337
    • /
    • 2007
  • The effect of seawater and air pollutants on the three-story stone pagodas on Gameunsa Temple Site have been studied in order to establish conservation basic plan. Also, an experimental study has been conducted to evaluate the effect of seawater salt and air pollutants on the weathering of granite. The results could be summarized as follows. Because the three-story stone pagodas on Gameunsa Temple Site are located outdoors, the external appearance has been largely deteriorated due to natural and artificial factors such as typhoon, wind, microorganisms, moisture, extreme change in temperature, air pollutants, and seawater, etc. When G.J fresh granite was dipped into the seawater, dissolution rate of three minerals (Mg, Ca, and K) are increased linearly until about 40 days and then increased abruptly. After seawater dipping experiments, the mineral compositions of the granite surface were lower then that of the G.J fresh granite but Poisson's ratio and absorption ratio were slightly increased. Therefore, from these results we can say that stone cultural properties could be weathered by seawater and air pollutants and it's considered being a meaningful experiment to study the conservation method of stone cultural properties from seawater.

Beginning and Characteristics of Stone pagoda in Jeonnam Region (전남지역 석탑의 출현과 특성)

  • Cheon, Deuk Youm
    • Journal of architectural history
    • /
    • v.23 no.1
    • /
    • pp.33-50
    • /
    • 2014
  • Formative and structural characteristics of stone pagoda in Jeonnam area are known in largely two flows. One is that characteristic of stone pagoda in Jeonnam area of the Unified Silla is shown in eastern Jeonnam and some southern Jeonnam. But it is not shown in surroundings of Yeongsan river. Another is that besides stone pagoda in Silla style where social aspects of Goryeo are reflected, stone pagoda in Baekje style appeared. On the other hand, stone brick pagoda and non-typical stone pagoda appeared. These stone pagodas were developed mainly in north and west of Jeonnam, and could be classified in pure Baekje style and a cross style according to formative and structural characteristics. Stone brick pagoda is extant in Wolnamsa site and Woonjusa in Chungcheong and Jella areas which are old places of Baekje.

A Comparative Studies on the Korean Brick Pagoda (한국전탑(韓國塼塔)에 관한 비교론적(比較論的) 연구(硏究))

  • Cheon, Deuk-Youm;Kim, Eun-Yang
    • Journal of architectural history
    • /
    • v.4 no.2 s.8
    • /
    • pp.25-44
    • /
    • 1995
  • Bricks are the earliest man-made building materials. Small-size bar bricks were found in use in the Warring States Period(戰國時代) in China. During the Qin(秦) and the Han(漢) Dynasties, brick constructions were built on a larger scale, but most of them were tombs. In case of Korea, bricks were found in use in the Three Kingdoms Period, but also most of them were tombs. Starting from the Unified Silla Period(統一新羅時代), brick gradually became a universal practice to built Buddhist Pagodas with bar bricks. Brick pagodas emergence marked a stage where technological progress made it possible for man to built high-rise brick work, and their dvelopment further perfected masonry technique and enabled building technology to attain new heights. Though from the very start brick pagodas existed side by side with stone pagodas, at the enitial stage they were overshadowed by their wooden counterparts and stone counterparts, because masonry thechiques were then still rather primitive, while woodwork and stonework had already reached a fairly advaced stage. The pagodas in ancient Korea were closely related to the Chinese stupa, which consisted of three parts, namely, the base, the body and the spire. The fact was, soon after the stupas were introduced into Korea, the Korean stupas began to develop features of their own. Korean brick pagodas were made up of a single-storeyed square base, multi-storeyed square body with a small gate, and a steel post with several layers of lotus flower superimposed one on the other.

  • PDF

Origin and meaning of Circular stone Pagoda in Unjusa Temple (운주사 원형석탑의 시원과 의미)

  • Kim, Ki-Yong;Cheon, Deuk-Youm
    • Journal of architectural history
    • /
    • v.23 no.4
    • /
    • pp.91-100
    • /
    • 2014
  • There are lots of and kinds of stone pagoda and stone Buddhas at Unjusa Temple in Hwasun, Jeonnam, which is thus called as Cheontap(千塔) or Cheonbul.(千佛) Several archaeological excavations have been conducted in Unjusa though, the foundation purpose or background motivation is yet wrapped in mystery. Circular shape is representative pagoda of Unjusa made of round frame or spherical roof but circular stone pagoda is unusual that there is no similar example found in India or China as well as in Korea. Located in the symbolic center, Circular stone pagoda is a key to understand Unjusa. Yundeung(輪燈) is made of stone for circular stone pagoda and there are craft lamp and large lamp. The large lamp, for the palace courtyard on the occasion of Palgwanhoe,(八關會) consists of discs and light on each disc. Outdoor lamp of circular stone pagoda made of stone for permanent preservation purpose. Unjusa is a very special temple with stone-yundeung for circular stone pagoda. In this study, a circular stone pagoda that is the source of yundeung said. Unjusa circular stone pagoda next to the title of 'yundeung pagoda' and proposes to call.

Inquiry about 'The Theory of Brick-Copy' of the Stone Pagoda at Bunhuangsa Temple (신라 분황사탑의 '모전석탑(模塼石塔) 설(說)' 대한 문제 제기와 고찰)

  • Lee, Hee-Bong
    • Journal of architectural history
    • /
    • v.20 no.2
    • /
    • pp.39-54
    • /
    • 2011
  • The Bunhuangsa stone pagoda, constructed in AD. 634, National Treasure no. 30, has been named as 'brick-copied pagoda' since the Japanese-ruling period by scholars. It is said that the Chinese brick pagoda was its precedent model, however the Bunhuangsa Pagoda is the oldest of all the Chinese-style brick pagodas except one, the Sungaksa Pagoda. The Chinese pagoda cannot have been a precedent model to copy due to its complex detail of wood vestige, as the Bunhuangsa pagoda is simple form without ornament. Domestic brick pagodas cannot have been a precedent model to copy as well, because all the domestic brick pagodas are younger than the Bunhuangsa Pagoda. Therefore, the terminology 'brick-copied pagoda' is a fallacy; it is rather that later brick pagoda copied the precedent the Bunhuangsa stone pagoda. The Bunhuangsa Pagoda is simply a piled-up pagoda of thick or thin, big or small slates of stone, facing only one smooth side and therefore needing nothing to relate to brick. The originality of the pagoda is more related to simple piled-up Indian stone stupa rather than Chinese brick pagoda. The roof form of its gradually stepped projection comes from the harmika of the summit of Indian stupa. Contrary to general history, old Silla Dynasty imported Buddhism directly from India by sea. From written national history and by temple foundation history, the Indian Buddhism evangelist possibly made influence to the erecting of temple and pagoda. The original wrong terminology has made a harmful effect gradually to the naming of mass-styled stone pagoda of only carved stepped-roof form after brick-copied pagoda. The false term 'brick-copied pagoda' should be discarded, which comes with superficial observation based on toadyism to China and colonialism to Japan. Instead of the fallacious term, this paper suggests multi-storied 'piled-up pagoda with slate stone.'

불국사 석탑의 지반 특성에 대한 지구물리탐사

  • Seo, Man-Cheol;O, Jin-Yong;Choe, Hui-Su
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.143-151
    • /
    • 2002
  • Bulku temple in the city of Kyungju, Korea, built in 791 and reconstructed in the 20th century, is the home of seven national treasures including two three-story stone pagodas, Dabotap (height 10.4m, width 7.4m, weight 123.2ton) and Seokgatap (height 10.8m, width 4.4m, weight 82.3 ton). An earlier archaeological investigation shows that stone pagodas have experienced severe weathering process which will threaten their stability. At the base part of Dabotap, an offset of the stone alignment is also observed. For the purpose of the structural safety diagnosis of two pagodas, we introduce the nondestructive geophysical methods. Site characteristics around the pagodas are determined by the measurement of multiple properties such as seismic velocity, resistivity, image of GPR(ground-penetrating radar). Near the pagodas, the occurrence of high resistivity (up to 2200 Ωm) is obvious whereas their outskirts have as low as 200 Ωm. For the velocity of the P wave, the site of Dabotap has the range of 500~800 m/s which is higher than counterpart of Seokgatap with the velocity of 300~500m/s, indicating the solider stability of Dabotap site. Consequently, in addition to GPR images, the foundation boundaries beneath each stone pagodas are revealed. The Dabotap site is in the form of an octagon having 6-m-long side with the depth of ~4m, whereas the Seokgatap site the 9m × 10m rectangle with the depth of 3m. These subsurface structures appear to reflect the original foundations constructed against the stone load of ~8 ton/㎡. At the subsurface beneath the northeast of each pagoda, low seismic velocity as well as low resistivity is prominent. It is interpreted to represent the weak underground condition.

  • PDF