• 제목/요약/키워드: stomatal response

검색결과 82건 처리시간 0.027초

Tolerance of Several Woody Plants to Sulphur Dioxide

  • Hwangbo, Jun-Kwon;Lee, Chang-Seok;Kim, Joon-Ho
    • Animal cells and systems
    • /
    • 제4권4호
    • /
    • pp.337-340
    • /
    • 2000
  • The photosynthetic and stomatal responses of several woody plants (Powlonia coreana, Firmiana simplex, Quercus acutissima Q. variabilis and Q. serrata) to SO$_2$ were investigated in order to understand their ecophysiological tolerance to $SO_2$ Of the plants, P, coreana showed the largest reduction in its photosynthesis in response to exposure of 0.4 ppm $SO_2$ for 20 h. Fumigation of 0.7 ppm $SO_2$ for 20 h caused complete leaf necrosis of P. coreana and f simplex, which made them unavailable for the measurement of photosynthesis. Q. variabilis exhibited the smallest reduction in photosynthesis following exposure of 0.7 ppm $SO_2$ for 20 h. Both stomatal- and non-stomatal inhibition of the plants by $SO_2$ were determined according to equations by lkeda et at. (1992). When exposed to 0.4 ppm $SO_2$ for 20 h, F. simplex and P. coreana showed the lowest stomatal and non-stomatal inhibition, respectively, while Q. variabilis and Q. serrata exhibited the lowest stomatal and non-stomatal inhibition, respectively, in response to 0.7 ppm $SO_2$ for 20 h. The data are discussed with regard to resistance mechanisms of other plants to $SO_2$ exposure and implications for restoration of declined Korean forests.

  • PDF

닭의장풀의 분리표피에서 $H_2O_2$에 의한 기공 닫힘기작 (The Mechanism of Stomatal Closing by $H_2O_2$ in Epidermal Strips of Commelina communis L.)

  • 이준상;전방욱
    • 한국환경과학회지
    • /
    • 제6권2호
    • /
    • pp.125-131
    • /
    • 1997
  • The mechanism of stomatal closing in response to $O_2$ was indirectly investigated by using $H_2O_2$ which is the intermediate product of $O_2$ metabolites. Stomata in epidermal strips close in response to $H_2O_2$. The effect of $H_2O_2$ on stomatal closing was dependent on the concentration of $H_2O_2$. 10 ppm $H_2O_2$ showed a clear effect on stomatal closing and 1000 ppm $H_2O_2$ induced complete stomatal closing after the treatment of 3 hours. Stomatal closing by $H_2O_2$ in intact leaf was also observed by measuring the diffusion resistance with porometer. It was found that the stomatal closing by $H_2O_2$ was not mediated by $Ca^{2+}$, and that was a different result observed in stomatal closing by water stress. Reversely, $Ca^{2+}$ showed a great inhibition on stomatal closing. The leakage of K+ in epidermal strips was doubled in response to $H_2O_2$ when it was campared to the control. 10 ppm $H_2O_2$ decreased photosynthetic activity. Fv/Fm representing the activity of Photosystem II was reduced about 4 % in 10 ppm $H_2O_2$ and 8 % in 100 ppm $H_2O_2$ In the treatment of 1.5 hour. However, stomatal closing by 10 ppm $H_2O_2$ was reduced about 56 %. According1y, it can be suggested that stomatal closing by $H_2O_2$ is related with the decrease of photosynthetic activity, but it was chiefly induced by the change of the membrane permeability. Key words Commelina communis, stomatal closing, $H_2O_2$, $Ca^{2+}$, photosynthesis.

  • PDF

The Relationship Between Stomatal Opening and Photosynthetic Activity of the Mesophyll in Commelina Communis L.

  • Lee, Joon-Sang
    • 한국환경과학회지
    • /
    • 제15권12호
    • /
    • pp.1109-1117
    • /
    • 2006
  • To investigate the influence of the mesophyll cells on stomatal opening in response to white light, the segments of isolated epidermis were transferred on partly exposed mesophyll cells of a leaf and stomatal apertures were measured. Transferring the isolated epidermis on partly exposed mesophyll cells of a leaf caused a marked increase on stomatal apertures while stomata in isolated epidermis incubated in MES buffer hardly opened. Mesophyll infiltration with photosynthetic inhibitors (DCMU, DCCD, $NaN_3$) was performed to elucidate the correlation between stomatal apertures and the degree of photosynthetic activity. It was found that transferring the isolated epidermis on partly exposed mesophyll cells of a leaf caused an increase of stomatal apertures depending on the degree of photosynthetic activities. In $NaN_3$ infiltrated leaf discs, transferring the fresh isolated epidermis on partly exposed mesophyll cells of a leaf showed no significant effect, but a slight increase on stomatal apertures. Isolated epidermis alone did not respond to the light properly, but if it was closely contacted with mesophyil cells, the stomata regained the ability of the light response. Therefore, it could be suggested that stomatai apertures were related with the degree of photosynthetic activity in the mesophyll cells.

Three Possible Mechanisms for Stomatal Opening in Response to Light

  • Lee, Joon-Sang
    • The Korean Journal of Ecology
    • /
    • 제28권2호
    • /
    • pp.105-112
    • /
    • 2005
  • Environmental factors such as light and low $CO_2$ concentrations trigger events which may result in stomatal opening. Stomatal aperature is largely controlled by the solute contents of guard cells, but not exclusively, by through changes in their content of potassium salts, with $K^+$ balanced either by $Cl^-$ or malate, depending on the species and conditions. However, how these signals are sensed and how they are transduced into driving the ion fluxes that control stomatal movements is not still fully understood. The basic role of stomata is regulating transpiration and photosynthesis. Photosynthesis plays a central role in the physiology of plants and an understanding of its response to light is, therefore, critical to any discussion of how plants sense and respond to light. It had been proposed that the evidences pointed three possible mechanisms for the light response. Firstly, there is a direct response of stomata to light. Secondly. there is an indirect response of stomata to light through the effect of $CO_2$. Lastly, there are some evidences for a third effect of light on stomata. However, attempts to investigate how these three possible mechanisms explained in detail in response to light have not been made. Therefore, this study is examined the differences among these three possible mechanisms.

오존에 대한 식물 기공 반응고찰 (Stomatal Response by Ozone)

  • 이준상;김병우
    • The Korean Journal of Ecology
    • /
    • 제20권2호
    • /
    • pp.83-94
    • /
    • 1997
  • Stomatal closing by ozone and water stress could reduce further ozone injury by inhibition of ozone influx to the tissue. Direct effect of ozone on stomata can be explained from two aspects which are a stimulation of stomatal closing and an inhibition of stomatal opening. An increase of $Ca^{2+}$ influx into cytoplasm by ozone could stimulate potassium efflux ion channel and inhibits inward potassium ion channels. By this mechanism ozone could induce stomatal closing. On the other hand, ozone could inhibit stomatal opening by affecting the activity of $H^{+}$ dependent ATPase of the membrane in guard cells. This would inhibit proton efflux which precede stomatal opening. It is also possible that ozone could reduce the activity of photosynthesis in guard cells which lead to affect the production of osmotically active sugars and energy. Indirect effect of ozone to stomata is through the effect of $CO_2$ elevation as a result of damage of the photozynthetic machinery. This indirect effect is slower than the direct effect.

  • PDF

맥류의 기공확산저항의 일중변화와 입위별 기공의 분포 (Diurnal Changes in Stomatal Diffusion Resistance and Distribution of Stomata on Different Leaf Positions in Barley and Wheat)

  • 이호진;윤진일;이광회
    • 한국작물학회지
    • /
    • 제26권1호
    • /
    • pp.45-50
    • /
    • 1981
  • Diurnal changes in leaf stomatal resistances were measured on leaf positions and both surfaces to investigate the stomatal response to irradiance in wheat, var. Chokwang and barley, var. Dongbori 1. Stomatal frequency and size were also determined to explain the control mechanism of gas exchanges in two species. The leaf diffusive resistances of two species decreased, as the sun rose, to minimum at 10 to 11 o'clock a.m. and increased gradually in the afternoon, even faster at sunset. As the adaxial irradiance increased, stomatal resistances decreased sensitively in the range of 30uEm$^{-2}$ㆍsec$^{-1}$ to 150uEm$^{-2}$ㆍsec$^{-1}$ quantum flux density. The stomatal opening of the abaxial surface began at lower irradiance and was completed earlier than the adaxial surface. The adaxial irradiances decreased in order of leaf position, flag, the 2nd, the 3rd leaf, and the stomatal resistances increased in the same order. Even under the same irradiance, the stomatal resistance of lower leaves were higher than those of upper leaves. The stomatal frequencies of lower leaves were less, but the stomatal size was greater than those of upper leaves. Consequently, the relative leaf area occupied by stomatal pores were constant among leaf positions in two species.

  • PDF

The Electrophysiology Application on Guard Cells to See the Influence of Carbon Dioxide

  • Lee, Joon-Sang
    • 한국환경과학회지
    • /
    • 제23권5호
    • /
    • pp.763-770
    • /
    • 2014
  • The effect of $CO_2$ on the opening of stomata in the intact leaf of Commelina communis has been investigated. Full opening of stomatal apertures(around $18{\mu}m$) was achieved in the intact leaf by addition of $CO_2$($900{\mu}mol\;mol^{-1}$). At 90 minutes, the stomatal apertures of leaves treated with $CO_2$ free air were reduced. In contrast, stomata opened most widely with the treatment of $CO_2$ air at 90 minutes. The effects of light, $CO_2$ air and $CO_2$ free air on the change of membrane potential difference(PD) were measured. Fast hyperpolarization of guard cell membrane PD was recorded reaching up to -12 mV in response to light. If $CO_2$ free air was given firstly, there was no response. When light was given after $CO_2$ free air, the light effect was very clear. At the onset of $CO_2$ air, the PD showed a dramatic hyperpolarization to about -25 mV. Changes in the pH of apoplast in intact leaves in response to $CO_2$ air were observed. $CO_2$ air caused a change of 0.4 pH unit. Therefore, it can be hypothesized that $CO_2$ flowing could stimulate proton efflux which is a necessary precursor of stomatal opening.

오존 환경(環境)이 잡종(雜種) 포플러의 생장(生長)과 기공개폐(氣孔開閉)에 미치는 영향(影響) (Effects of Ozone Environmental Stress on Growth and Stomatal Response in the F2 Hybrid Poplar (Populus trichocarpa × Populus deltoides))

  • 우수영
    • 한국산림과학회지
    • /
    • 제87권1호
    • /
    • pp.50-56
    • /
    • 1998
  • 오존에 약(弱)하거나 저항성(抵抗性)을 가지는 포플러 개체(個體)를 선발(選拔)하기 위해서 36개의 잡종(雜種)포플러 클론을 오존에 노출(露出)시켰다. Open-top chamber를 이용(利用)하여 하루에 6-8시간, 3개월 동안 90-115ppb의 농도(濃度)로 오존을 노출시켰다. 수고(樹高), 직경(直徑), 엽수(葉數), 물질생산량(物質生産量), root/shoot비율(比率), 낙엽률(落葉率), 기공반응(氣孔反應) 조사(調査)하였다. 수고, 직경, 엽수, 물질생산량, root/shoot비율, 기공 conductance는 오존 때문에 감소(減少)하였고, 낙엽률은 증가(增加)하였다. 이 연구에서는 기공 conductance와 물질생산량과의 관계(關係)는 아주 낮게 나타났다. 오존환경(環境)에 대해서 저항성을 갖는 것은 기공(氣孔)의 개폐(開閉)와 항상(恒常) 관계(關係)가 있는 것은 아니라고 사료(思料)되며, 아마도 생화학적(生化學的)이고 생리적(生理的)인 다른 요인(要因)에 대(對)한 연구(硏究)가 포플러 클론이 갖는 저항성을 이해(理解)하는데 도움이 될 것이다.

  • PDF

고려인삼의 광합성 특성 I. 광도와 잎온도의 변화에 따른 광합성 반응 (Photosynthetic Characteristics of Panax ginseng C.A. Meyer I. Photosynthetic Response to Changes of Light Intensity and Leaf Temperature)

  • 현동윤;황종규
    • Journal of Ginseng Research
    • /
    • 제17권3호
    • /
    • pp.240-245
    • /
    • 1993
  • This study was conducted with ginseng plants to investigate photosynthetic response to changes of light intensity and leaf temperature. $CO_2$ uptake in diurnal course was highest in the first phase (8 00~5 : 30 Am.) on May 30, 1992. In $CO_2$ uptake related to stomatal conductance, these relationship was synchronized in diurnal course, but relationship between TEX>$CO_2$ uptake and intercellular $CO_2$ concentration in diurnal course was synchronized oppositely. Leaf temperature and light intensity at the highest $CO_2$ uptake were in the range of 23~$24^{\circ}C$) and 95$\mu$mol.$m^{-2}$.$s^{-1}$), $CO_2$ , respectively. In response to an increasing light intensity under a constant leaf temperature ($18^{\circ}C$), $CO_2$ uptake was increased throughout the light intensity sequence up to 250$\mu$mol.$m^{-2}$.$s^{-1}$), $CO_2$ When $CO_2$ uptake was measured with a series of leaf temperature under a constant light intensity (250 $\mu$mol.$m^{-2}$.$s^{-1}$), $CO_2$ uptake was highest at $18^{\circ}C$ as a 4.1$\mu$mol.$m^{-2}$.$s^{-1}$), $CO_2$ . Similar changes were also observed in stomatal conductance and intercellular $CO_2$ concentration. Evidences from several approaches indicate that synchronization of $CO_2$ uptake, stomatal conductance and intercellular $CO_2$ concentration were closely inter-related and changes of leaf temperature iuluenced the photo-response in photosynthetic processes.

  • PDF

Phosphorylation, 14-3-3 protein and photoreceptor in blue light response of stomatal guard cells

  • Toshinori Kinoshita;Takashi Emi;Michio Doi;Shimazaki, Ken-ichiro
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.335-337
    • /
    • 2002
  • Blue light (BL) induces stomatal opening through activation of H$^{+}$ pump, which creates electrical gradient across the plasma membrane for $K^{+}$ uptake into guard cells. The pump is the plasma membrane H$^{+}$ -ATPase and is activated via phosphorylation of the C-terminus with concomitant binding of the 14-3-3 protein. The opening is initiated by the perception of BL through phototropin (phot), which are recently identified as BL receptors in stomatal guard cells. In this study, we provide the biochemical evidence for phots as BL receptors in stomatal guard cells. vfphot was phosphorylated reversibly by BL, and phosphorylation levels of vfphot increased earlier than those of the plasma membrane W-ATPase. BL-dependent phosphorylations of vfphot and H$^{+}$-ATPase showed similar fluence dependency. Staurosporin, an inhibitor of serine/threonine protein kinase, and diphenyleneiodonium chloride (DPI), an inhibitor of flavoprotein, inhibited BL-dependent phosphorylations of vfphot and H$^{+}$ -ATPase. These results indicate that vfphot acts as a BL-receptor mediating stomatal opening.l opening.

  • PDF