• Title/Summary/Keyword: stomatal resistance

Search Result 80, Processing Time 0.032 seconds

Comparative Study of Stomatal Density and Gas Diffusion Resistance in Leaves of Various Types of Rice (벼 품종유형간 잎 기공밀도와 기체확산저항 비교)

  • Chen, Wenfu;Su, Zenjin;Qian, Taiyong;Zhang, Longbu;Joo Yeul, Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.125-132
    • /
    • 1995
  • Studies were made on differences among types and varieties of rice in stomatal density and gas diffusion resistance, and on the relationship between these traits and photosynthetic rate. Significant differences among types and varieties were found stomatal density and gas diffusion resistance. Generally, stomatal density was higher in indica varieties than in Japonica varieties, gas diffusion resistance was lower in the former than in the later, in varieties developed through indica-japonica hybridization it was intermadiate. The stomatal density was closely positively correlated with the gas conductivity and the net photosynthetic rate, was not correlated with single leaf area, and had significant negative correlation with specific leaf weight. Higher photosynthetic rate of indica varieties mainly results from its high stomatal density and low gas diffusion resistance. The result also suggested that high photosynthetic rate might be obtained if the high stomatal density and low gas diffusion resistance in indica could be combined with the larger specific leaf weight in japonica through crossing between two.

  • PDF

Diurnal Changes in Stomatal Diffusion Resistance and Distribution of Stomata on Different Leaf Positions in Barley and Wheat (맥류의 기공확산저항의 일중변화와 입위별 기공의 분포)

  • 이호진;윤진일;이광회
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.1
    • /
    • pp.45-50
    • /
    • 1981
  • Diurnal changes in leaf stomatal resistances were measured on leaf positions and both surfaces to investigate the stomatal response to irradiance in wheat, var. Chokwang and barley, var. Dongbori 1. Stomatal frequency and size were also determined to explain the control mechanism of gas exchanges in two species. The leaf diffusive resistances of two species decreased, as the sun rose, to minimum at 10 to 11 o'clock a.m. and increased gradually in the afternoon, even faster at sunset. As the adaxial irradiance increased, stomatal resistances decreased sensitively in the range of 30uEm$^{-2}$ㆍsec$^{-1}$ to 150uEm$^{-2}$ㆍsec$^{-1}$ quantum flux density. The stomatal opening of the abaxial surface began at lower irradiance and was completed earlier than the adaxial surface. The adaxial irradiances decreased in order of leaf position, flag, the 2nd, the 3rd leaf, and the stomatal resistances increased in the same order. Even under the same irradiance, the stomatal resistance of lower leaves were higher than those of upper leaves. The stomatal frequencies of lower leaves were less, but the stomatal size was greater than those of upper leaves. Consequently, the relative leaf area occupied by stomatal pores were constant among leaf positions in two species.

  • PDF

Analysis of Factors Rerated to Absorption Ability of Foliage Plants Exposed to $O_3$ (관엽식물의 오존($O_3$)흡수능에 관여하는 요인 분석)

  • 박소홍;배공영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.6
    • /
    • pp.537-544
    • /
    • 1998
  • We selected Spathiyhyllum patinii and Pachira aqkatica, since the former has high O3 absorption while the latter low absorption, and analyzed physiological factors such as diffusive coefficient, transpiration rate, photosynthetic rate, and CO2 absorption rate, which affected O3 absorption capacity There was significant relationship between gas absorption capacity and the other factors; photosynthetic rate, diffusive resistance, stomatal resistance and CO2 absorption rate. Therefore model formula for estimation of O3 absorption rate in plant was formulated by making use of these factors. There was difference for the estimation of O3 absorption rate according to plant species. In case of Spathiphyllum patinii, photosynthetic rate is an optimal factor for estimation of O3 absorption capacity. On the other hand, stomatal resistance and diffusive resistance are optimal factors of Pachira aquatica among various physiological ones. And we knew that CO2 absorption rate is a potential factor to evaluate gas absorption capacity regardless of plant species. But considering efficiency and practicality, diffusive resistance was the most effective factor for the estimation of O3 gas absorption.

  • PDF

Tolerance of Several Woody Plants to Sulphur Dioxide

  • Hwangbo, Jun-Kwon;Lee, Chang-Seok;Kim, Joon-Ho
    • Animal cells and systems
    • /
    • v.4 no.4
    • /
    • pp.337-340
    • /
    • 2000
  • The photosynthetic and stomatal responses of several woody plants (Powlonia coreana, Firmiana simplex, Quercus acutissima Q. variabilis and Q. serrata) to SO$_2$ were investigated in order to understand their ecophysiological tolerance to $SO_2$ Of the plants, P, coreana showed the largest reduction in its photosynthesis in response to exposure of 0.4 ppm $SO_2$ for 20 h. Fumigation of 0.7 ppm $SO_2$ for 20 h caused complete leaf necrosis of P. coreana and f simplex, which made them unavailable for the measurement of photosynthesis. Q. variabilis exhibited the smallest reduction in photosynthesis following exposure of 0.7 ppm $SO_2$ for 20 h. Both stomatal- and non-stomatal inhibition of the plants by $SO_2$ were determined according to equations by lkeda et at. (1992). When exposed to 0.4 ppm $SO_2$ for 20 h, F. simplex and P. coreana showed the lowest stomatal and non-stomatal inhibition, respectively, while Q. variabilis and Q. serrata exhibited the lowest stomatal and non-stomatal inhibition, respectively, in response to 0.7 ppm $SO_2$ for 20 h. The data are discussed with regard to resistance mechanisms of other plants to $SO_2$ exposure and implications for restoration of declined Korean forests.

  • PDF

Sorbitol-Facilitated Preconditioning Improves Desiccation Resistance of Douglas-fir and Western Hemlock Seedlings

  • Guak Sung-Hee
    • Journal of Bio-Environment Control
    • /
    • v.15 no.1
    • /
    • pp.100-106
    • /
    • 2006
  • A hypertonic solution of sorbitol was used to precondition Douglas-fir and Western hemlock plug seedlings to improve desiccation resistance. Seedlings were preconditioned by soaking their root balls in water, -0.75 or -1.50 MPa sorbitol solution for 22 hr, and then exposed to desiccation conditions for 8 days. During the desiccation period, a transpirational water loss was significantly reduced by the sorbitol preconditioning, with its effect positively depending on concentration. This preconditioning-induced reduction in water loss was mainly caused by the decline in needle stomatal conductance. Sorbitol-induced stomatal control was more closely associated with reduction in plant water potential, rather than increase in abscisic acid concentrations. After rehydration of stressed-plants, most of the preconditioned seedlings with sorbitol were survived, while only 35% of Douglas-fir and 28% of Western hemlock seedlings treated with water were alive. The post-growth was significantly greater in the preconditioned seedlings than only water-treated seedlings. These results suggested that the earlier stomatal control with sorbitol-facilitated preconditioning could play a role in improving desiccation resistance of evergreen woody plants at transplanting in the field where water supply is limited or dry conditions are prevailing.

The Mechanism of Stomatal Closing by $H_2O_2$ in Epidermal Strips of Commelina communis L. (닭의장풀의 분리표피에서 $H_2O_2$에 의한 기공 닫힘기작)

  • 이준상;전방욱
    • Journal of Environmental Science International
    • /
    • v.6 no.2
    • /
    • pp.125-131
    • /
    • 1997
  • The mechanism of stomatal closing in response to $O_2$ was indirectly investigated by using $H_2O_2$ which is the intermediate product of $O_2$ metabolites. Stomata in epidermal strips close in response to $H_2O_2$. The effect of $H_2O_2$ on stomatal closing was dependent on the concentration of $H_2O_2$. 10 ppm $H_2O_2$ showed a clear effect on stomatal closing and 1000 ppm $H_2O_2$ induced complete stomatal closing after the treatment of 3 hours. Stomatal closing by $H_2O_2$ in intact leaf was also observed by measuring the diffusion resistance with porometer. It was found that the stomatal closing by $H_2O_2$ was not mediated by $Ca^{2+}$, and that was a different result observed in stomatal closing by water stress. Reversely, $Ca^{2+}$ showed a great inhibition on stomatal closing. The leakage of K+ in epidermal strips was doubled in response to $H_2O_2$ when it was campared to the control. 10 ppm $H_2O_2$ decreased photosynthetic activity. Fv/Fm representing the activity of Photosystem II was reduced about 4 % in 10 ppm $H_2O_2$ and 8 % in 100 ppm $H_2O_2$ In the treatment of 1.5 hour. However, stomatal closing by 10 ppm $H_2O_2$ was reduced about 56 %. According1y, it can be suggested that stomatal closing by $H_2O_2$ is related with the decrease of photosynthetic activity, but it was chiefly induced by the change of the membrane permeability. Key words Commelina communis, stomatal closing, $H_2O_2$, $Ca^{2+}$, photosynthesis.

  • PDF

Post Infection Physiobiochemical Alteration at Various Intensities of Leaf spot (Myrothecium roridum) in Mulberry

  • Kumar, P.M.Pratheesh;Qadri, S.M.H.;Pal, S.C.;Mishra, A.K.;Urs, S.Raje
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.175-180
    • /
    • 2003
  • Changes in biochemical constituents and physiological alteration were studied in various intensities (1-5%, 6-15%, 16-30%, 31-50% and > 50%) of leaf spot (Myrothecium roridum) on mulberry leaves and compared with healthy leaves. Chlorophyll, total soluble sugar and total protein were decreased (P < 0.01), but total phenol increased due to pathogen infection. Changes in biochemical constituents showed significant correlation with intensity of disease. Chlorophyll ($r^2$= 0.92), and protein (($r^2$= 0.83) possessed negative while phenol (($r^2$= 0.61) possessed positive correlation. Photosynthetic rate, transpiration rate, stomatal conductance, moisture content (%) and physiological water use efficiency (pWUE) were decreased, but stomatal resistance increased in the infected leaves. Physiological parameters also possessed significant (P < 0.01) correlation with disease intensity. Photosynthetic rate (($r^2$= 0.96), transpiration rate ($r^2$=0.88), stomatal conductance (($r^2$= = 0.65), physiological water use efficiency (($r^2$= 0.88) and moisture content (r = 0.85) were negatively but stomatal resistance (($r^2$= 0.75) was positively correlated to disease intensities.

Studies on the Shade Tolerance, Light Requirement and Water Relations of Economic Tree Species(II) -Effects of Artificial Shade Treatment on the Water Potential and Stomatal Diffusive Resistance of Four Deciduous Hardwood Species- (주요경제수종(主要經濟樹種)의 내음성(耐陰性) 및 광선요구도(光線要求度)와 수분특성(水分特性)에 관한 연구(硏究)(II) -인공피음(人工被陰)이 활엽수(闊葉樹) 4종(種)의 수분(水分)포텐셜 및 기공증산저항(氣孔蒸散低抗)에 미치는 영향(影響)-)

  • Kwon, Ki Won;Choi, Jeong Ho;Chung, Jin Cheol
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.2
    • /
    • pp.198-207
    • /
    • 2000
  • The diurnal and seasonal changes of water potential and stomatal diffusive resistance were investigated with the effects of shade treatment to elucidate the water relations of the one year old seedlings of Betula platyphylla var. japonica, Zelkova serrata, Acer mono, and Prunus sargentii subjected to five levels of artificial shade treatments from full sun to nearly full shading of 2-6% relative light transmittance. Stomatal diffusive resistance measured in the four deciduous hardwood species studied changed variously by growing season and by species with the five shade treatments in the ranges of 1.7~25.1s/cm in 9 a.m., 2.3~33.3s/cm in 1 p.m., and 1.1~36.8s/cm in 5 p.m.. The measurements of stomatal diffusive resistance increased with increasing the shading, and were higher in September than in June or July in most of the species studied. The stomatal diffusive resistance measured in Zelkova serrata, Acer mono, and Prunus sargentii seemed to be approximately 3~4 times higher in nearly full shading treatment than in full sun. Water potential also changed variously by growing season and by species with five different shade treatments in the ranges of -0.17~-1.20MPa in 9 a. m., -0.30~-2.03MPa in 1 p. m., and -0.18~-1.34MPa in 5 p.m., respectively. On the reverse of stomatal diffusive resistance, the measurements of water potential were lower in September than in June or July in most of the species studied, and the seasonal differences were especially greater in Zelkova serrata comparing with the other species. The water potential seemed to be higher of approximately 2~3 times in nearly full shading treatment than in full sun in all of the species studied, but the differences among the shading treatments were less in water potential than in stomatal diffusive resistance. The differences of water potential following the gradient of five shading treatment seemed to be less in Betula platyphylla var. japonica than in the other species. In Acer mono and Prunus sargentii being some shade tolerant species, the water potential increased rapidly through about noontime with raising the shading level from full sun to the intermediate shading level of 22-28% relative light transmittance, but slowly with closing to full shading. In Betula platyphylla var. japonica and Zelkova serrata being shade intolerant species, the water potential increased gradually throughout the shading levels and the increment ranges were greater in Zelkova serrata than in Betula platyphylla var. japonica.

  • PDF

A Study on the Change of Photosynthetic Patterns by the Cladode Orientation of Opuntia lanceolata Haw. (부채仙人掌( Opuntia lanceolata Haw. )의 葉牀莖方位에 따른 光合成樣式의 變化에 관한 硏究)

  • Chang, Nam-Kee;Chang-Duck Jin;Young-Soo Kim
    • The Korean Journal of Ecology
    • /
    • v.7 no.3
    • /
    • pp.99-108
    • /
    • 1983
  • Diurnal acid fluctuation, stomatal resistance, and solar radiation with regard to the cladode orientation were investigated in Opuntia lanceolata Haw. growing at WPeolryeong-ri, Hallim-eup, Chejudo, Korea. Diurnal changes of titratable acidity showed the typical CAM pattern in all investigated cladodes. Water tissue in the cladode had the same pattern of acid fluctuation as mesophyll tissue. Stomatal resistance was low during the night, increased rapidly to be a peak right after sunrise and decreased again thereafter. The southern side of the cladode showed higher stomatal resistance than the northern side during the day time. It suggests that the stomata of the northern side opens under diffuse radiation. The amount of solar radiation varied depending upon the cladode orientation. It is thought that C4 acids move inter and intra mesophyll tissues in the cladode through the unknown pathways. RuBP carboxyulase activity in the cladode was very high at 14:00, but was not significant at 01:00. PEP-carboxylase had high activities both at 14:00 and at 01:00. The results of this study showed the possibility that O. lanceolata Haw. had the C3, C4 and CAM photosynthetic patterns under the environmental conditions at Weolryeong-ri.

  • PDF

Responses of Quercus spp. to $SO_2$ ($SO_2$에 대한 참나무속 식물의 반응)

  • 이창석;배정오
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.219-226
    • /
    • 1991
  • Results from study on physiological responses to $SO_2$ of Quercus spp. selected for restoration of vegetation damaged by air pollution in the field study were as follows. Tolerance of Quercus aliena, Q. acutissima and Q. mongolica used in this study to $SO_2$ was higher in that order and tolerance of these plants to $SO_2$ was high comparatively among trees composing of major forest vegetation of Korea including natural forests and plantations. Stomatal resistance of these plants was increased after exposure to $SO_2$ and range of increase was different among species. From discrepancy between order of tolerance to $SO_2$ and range of increase in stomatal resistance, we were estimated that resistance mechanisms of Quercus spp. were different among species as mechanism originated in avoidance and resistance, respectively. Water potential of plant leaves reduced after exposure to $SO_2$, degree of reduction accorded with order of tolerance to $SO_2$. Reduction of water potential of plants after exposure to $SO_2$ was initiated before appearance of visible damage in plant leaves and water potential of plants exposed to $SO_2$ of low concentration, in which plants were not showed viaible damage was also reduced.

  • PDF