• Title/Summary/Keyword: stomatal closure

Search Result 22, Processing Time 0.016 seconds

ABA Signal Transduction Pathway in Plants: ABA Transport, Perception, Signaling and Post-Translational Modification (식물의 앱시스산 신호 전달 기작: 앱시스산 수송, 인식, 신호 전달 및 번역 후 변형 과정에 관하여)

  • Lee, Jae-Hoon
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.196-208
    • /
    • 2014
  • During the life cycle of plants, water deficit leads to an adverse effect on its growth and development. To increase the productivity of crops, overcoming such drought stress is one of the most important issues in the field of plant study. Among plant hormones, the phytohormone, abscisic acid (ABA) plays a crucial role in eliciting resistance to drought stress as well as in multiple developmental processes, such as seed germination, stomatal closure, and seedling growth. Therefore, further understanding of the ABA-mediated signal transduction pathway in plants is an effective strategy to generate drought-tolerant plants. Posttranslational modification, such as phosphorylation and ubiquitination, is an efficient mechanism for plants to acquire quick adaptation against environmental stress conditions since this process directly affects pre-existing signaling components by modulating protein activity and stability. Here, recent reports on ABA signaling are reviewed, especially focusing on ABA transport, perception, signaling, and posttranslational modification in ABA-mediated cellular responses. Also, we present future prospects on how the control of such a mechanism can be applied to generate useful agricultural crops.

Growth Response and Changes of Nitrate and Sucrose Content in Tomato under Salt Stress Condition (염스트레스에 의한 토마토 생장반응과 식물체내 Nitrate 및 Sucrose 변화)

  • Lee, Ju-Young;Jang, Byoung-Choon;Lee, Su-Yeon;Park, Jae-Hong;Choi, Geun-Hyoung;Kim, Sam-Cwaun;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.164-169
    • /
    • 2008
  • This experiment was carried out to find the growth response and changes of nitrate and soluble sugar content in tomato leaves with salt stress. Tomato (Solanum lycopericum) seedlings were grown under different electrical conductivity (EC) levels adjusted with $CaCl_2$ as 1, 2, and $6dS\;m^{-1}$. The growth response and contents of nitrate and soluble sugar in tomato plants were examined at 7 and 14 days after salt treatment. Leaf area and dry weight ratio of shoot to root of tomato plants were decreased as EC level increased. Photosynthetic rate of leaves was reduced under high EC level due to the stomatal closure and the reduction of transpiration rate. The soluble sugar and starch content were lower in the tomato leaves grown under high EC level. Total nitrogen and nitrate contents were decreased in high EC level, whereas the ammonium content was increased. High-salt stress induced the accumulation of salt crystal in mesophyll cells of tomato leaf.