Growth Response and Changes of Nitrate and Sucrose Content in Tomato under Salt Stress Condition

염스트레스에 의한 토마토 생장반응과 식물체내 Nitrate 및 Sucrose 변화

  • Received : 2008.05.01
  • Accepted : 2008.06.08
  • Published : 2008.06.30

Abstract

This experiment was carried out to find the growth response and changes of nitrate and soluble sugar content in tomato leaves with salt stress. Tomato (Solanum lycopericum) seedlings were grown under different electrical conductivity (EC) levels adjusted with $CaCl_2$ as 1, 2, and $6dS\;m^{-1}$. The growth response and contents of nitrate and soluble sugar in tomato plants were examined at 7 and 14 days after salt treatment. Leaf area and dry weight ratio of shoot to root of tomato plants were decreased as EC level increased. Photosynthetic rate of leaves was reduced under high EC level due to the stomatal closure and the reduction of transpiration rate. The soluble sugar and starch content were lower in the tomato leaves grown under high EC level. Total nitrogen and nitrate contents were decreased in high EC level, whereas the ammonium content was increased. High-salt stress induced the accumulation of salt crystal in mesophyll cells of tomato leaf.

토양에 과잉으로 집적된 염류에 대한 작물의 양분과잉 흡수 피해 기작을 밝히고 그 피해를 경감할 수 있는 기술을 개발하고자 토마토 유묘에 염 스트레스를 유발하고 이때 식물체 생장반응 비교와 잎 중 질소와 당의 변화를 구명하고자 본 시험을 수행한 결과는 다음과 같다. 가. 염 스트레스에 의한 식물체의 생장특성은 생체중과 건물중의 감소와 엽면적이 작고, 지상부와 지하부의 건물중 비가 낮아져 지상부의 생장 저해가 뿌리보다 큰 것으로 보인다. 나. 염 스트레스를 받은 토마토 잎은 잎의 기공이 닫혀 있어 광합성능이 감소하였다. 다. EC $6dS\;m^{-1}$ 정도의 염 농도에서는 어린 토마토 잎 중 수용성당과 전분함량이 현저하게 감소하였다. 라. 염 스트레스를 받으면 토마토 잎 중 총 질소함량이 크게 낮아졌으며, $NO_3^-$ 농도는 낮아지는 반면 $NH_4^+$ 농도는 높아졌다.

Keywords

References

  1. Abd-EIBaki, G.K., F. Siefritz, H.M. Man, H. Weiner, R. Haldenhoff and W.M. Kaiser. 2000. Nitrate reductase in Zea mays L. under salinity. Plant. Cell and Environment 23 : 515-521. https://doi.org/10.1046/j.1365-3040.2000.00568.x
  2. Balibrea, M.E., I. Dell' Alnico, M.C. Bolarin, and F. Perez-Alfocea. 2000. Carbon partitioning and sucrose metabolism in tomato plants growing under salinity, Physiol. Plant 110 : 503-511. https://doi.org/10.1111/j.1399-3054.2000.1100412.x
  3. Benes, S.E., R. Aragus, S.R. Grattan and R.B. Austin. 1996. Foliar and root absorption of Na+ and CI- in maize and barley : Implications for salt tolerance screening and the use of saline sprinkler irrigation. Plant and Soil. 180 : 75-86. https://doi.org/10.1007/BF00015413
  4. Carillo, P,G. Mastrolonardo, F. Nacca and A. Fuggi. 2005. Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Functional Plant Biology 32 : 209-219. https://doi.org/10.1071/FP04184
  5. Cataldo, D., A.M. Haroon., L.E. Schrader and V.L. Young. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Comm. Soil Sci. Plant Anal. 6 : 71-80. https://doi.org/10.1080/00103627509366547
  6. Cuartero, J. and F.M. rafael. 1999. Tomato and salinity. Sci. Hort. 78 : 83-125.
  7. Hirayama, Chikara and Masatoshi Nakamura. 2002. Regulation of glutamine metabolism during the development of Bombyx mori larvae. Biochimica et Biophysica Acta. 1571 : 131-137. https://doi.org/10.1016/S0304-4165(02)00207-6
  8. Debouba, Mohamed, Houda Maaroufi-Dghimi, Akira Suzuki, Mohamed Habib Ghorbel and Houda Gouia. 2007. Changes in growth and activity of enzymes involved in nitrate reduction and ammonium assimilation in tomato seedlings in response to NaCI Stress. Annals of Botany 99 : 1143-1151. https://doi.org/10.1093/aob/mcm050
  9. Evers, D., C. Schmit, Y. Mailliet and F. Hausman. 1997. Growth characteristics and biochemical changes of poplar shoot in vitro under sodium chloride stress. J. Plant Physiol. 151 : 748-753. https://doi.org/10.1016/S0176-1617(97)80073-9
  10. Flares, P, M.A. Batella, V. Martinez and A. Cerdá. 2000. Ionic and osmotic effects of nitrate reductase activity in tomato seedlings. Journal of Plant Physiology 156 : 552-557. https://doi.org/10.1016/S0176-1617(00)80172-8
  11. Kaiser, W.M. 1987. Effect of water deficit in photosynthetic capacity, Physiol. Planta. 71 : 142-149.
  12. Khelil, Aminata, Thierry Menu and Berenice Ricard. 2007. Adaptive response to salt involving carbohydrate metabolism in leaves of a salt-sensitive tomato cultivar. Plant Physiology and Biochemistry 45 : 551-559. https://doi.org/10.1016/j.plaphy.2007.05.003
  13. Lips, S.H. 1998. Nitrogen stress and plant growth regulation, in: H.S. Srivastava, R.P. Singh (Eds.), Nitrogen Nutrition and Plant Growth, IBH Publishing, Oxford and New Delhi, India, pp. 283-304.
  14. Lutts, s., J.M. Kinet and J. Bouharmont. 1995. Changes in plant response to during development of rice(Oryza sativa L.) varieties differing in salinity resistance. J. Exper. Bot. 46(293) : 1843-1852 https://doi.org/10.1093/jxb/46.12.1843
  15. Michael, C.S., M.G. Catherine and E.F. Leland. 1994. Whole plant response to salinity. In R. E. Wilkison(ed), Plant-environment interaction. Marcel Dekker, Inc. New York. 199-244.
  16. Parida, A.K., A.B. Das. 2004. Effects of NaCl stress on nitrogen and phosphorus metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. Journal of Plant Physiology 161 : 921-928. https://doi.org/10.1016/j.jplph.2003.11.006
  17. Robin, P. 1979. Etude de quelques conditions d' extraction de la nitrate reductase des racines et des feuilles de plantules mais. Physiol Veg. 7 : 45-54.
  18. Rodriguez, P., J, DeB' Amico, D. Morales, M.J. Sanchez branco and 1.J. Alarcon. 1997. Effects of salinity on growth, shoot water relations and root hydraulic conductivity in tomato plants. J. Agri. Sci. 128 : 430-444.
  19. Rose, J.H. 1955. The determination of sugar in blood and spinal fluid with anthrone reagent. J. Biol. Chem. 212 : 335-343.
  20. Shalhevet, 1., M.G. Huck, and B.P. Schroeder. 1995. Root and shoot growth responses to salinity in maize and soybean. Agron. J. 87 : 12-516.
  21. Spurr, A.R. 1969. A low viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructural Research. 26 : 31-43. https://doi.org/10.1016/S0022-5320(69)90033-1
  22. Stitt, M. 1987. Rising $CO_2$ levels and their potential significance to carbon flow in photosynthetic cells. Plant Cell Environ. 14 : 7104- 7108.
  23. Volkmar, K.M., Y. Hu and H. Steppuhn. 1998. Physiological responses of plants to salinity : A review. Can. J. Plant Sci. 78 : 19-27. https://doi.org/10.4141/P97-020
  24. Yamazaki, K. 1981. The management of nutrient solution on soilless culture, Agriculture and Horticulture. 56 : 563-568(In Japanese)
  25. 농촌진흥청 농업과학기술원. 2000. 토양 및 식물체 분석법.
  26. 散埼矜杯. 1978. 양액재배 전편. pp 34-49.