• Title/Summary/Keyword: stomata.

Search Result 227, Processing Time 0.026 seconds

Applications of Thermal Imaging Camera to Detect the Physiological States Caused by Soil Fertilizer, Shading Growth, and Genetic Characteristic (열화상 카메라 활용을 위한 토양비료, 차광생육, 유전특성 차이 관련 작물생리 원격탐지)

  • Moon, Hyun-Dong;Cho, Yuna;Jo, Euni;Kim, Hyunki;Kim, Bo-kyeong;Jeong, Hoejeong;Kwon, Dongwon;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1101-1107
    • /
    • 2022
  • The leaf temperature is principally regulated by the opening and closing of stomata that is sensitive to various kinds of plant physiological stress. Thus, the analysis of thermal imagery, one of remote sensing technique, will be useful to detect crop physiological condition on smart farm system and phenomics platform. However, there are few case studies using a thermal imaging camera on the agricultural application. In this study, three cases are presented: the effect of lime fertilizer on the rice, the different physiological properties of soybean under shading condition, and the screening of soybean breeds for salinity tolerance characteristic. The leaf temperature measured by thermal imaging camera on the three cases was used effectively to the physiological change and characteristics. However, the thermal imagery analysis requires considering the accuracy of measured temperature and the weather conditions that affects to the leaf temperature.

Changes in photosynthesis and carbohydrate synthesis in response to elevated UV-B environment (고 자외선 환경에서 식물의 광합성, 기공조절 및 탄수화물 합성)

  • Yun, Hyejin;Sung, Jwakyung;Lee, Suyeon;Lee, Yejin;Ha, Sangkeun;Sonn, Yeonkyu
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.275-281
    • /
    • 2014
  • The ozone depletion has caused plants to be exposed to an increased penetration of solar ultraviolet-B (UV-B) radiation. Enhanced UV-B radiation may have influence on biological functions of plant in many aspects including inhibition of photosynthesis. It is evident that UV-B can potentially impair the performance of all three main component processes of photosynthesis, the photophosphorylation reactions of the thylakoid membrane, the $CO_2$-fixation reactions of the Calvin cycle and stomatal control of $CO_2$ supply. Owing to these depressed reactions, the production and allocation of carbohydrates might be markedly affected, and therefore, the growth and development of plant are distinctly reduced. In this review paper, we provide basic theory and further researches in terms of photosynthesis and carbohydrate synthesis in response to elevated UV-B radiation.

Alteration of Leaf Surface Structures of Poplars under Elevated Air Temperature and Carbon Dioxide Concentration

  • Kim, Ki Woo;Oh, Chang Young;Lee, Jae-Cheon;Lee, Solji;Kim, Pan-Gi
    • Applied Microscopy
    • /
    • v.43 no.3
    • /
    • pp.110-116
    • /
    • 2013
  • Effects of elevated air temperature and carbon dioxide ($CO_2$) concentration on the leaf surface structures were investigated in Liriodendron tulipifera (yellow poplar) and Populus tomentiglandulosa (Suwon poplar). Cuttings of the two tree species were exposed to elevated air temperatures at $27/22^{\circ}C$ (day/night) and $CO_2$ concentrations at 770/790 ppm for three months. The abaxial leaf surface of yellow poplar under an ambient condition ($22/17^{\circ}C$ and 380/400 ppm) had stomata and epicuticular waxes (transversely ridged rodlets). A prominent increase in the density of epicuticular waxes was found on the leaves under the elevated condition. Meanwhile, the abaxial leaf surface of Suwon poplar under an ambient condition was covered with long trichomes. The leaves under the elevated condition possessed a higher amount of long trichomes than those under the ambient condition. These results suggest that the two poplar species may change their leaf surface structures under the elevated air temperature and $CO_2$ concentration condition for acclimation of increased photosynthesis.

Ambient Variable Pressure Field Emission Scanning Electron Microscopy for Trichome Profiling of Plectranthus tomentosa by Secondary Electron Imaging

  • Kim, Ki Woo
    • Applied Microscopy
    • /
    • v.43 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • Glandular and nonglandular trichomes on the leaf surface of Plectranthus tomentosa were investigated by variable pressure field emission scanning electron microscopy (VP-FESEM). The segments of the plant's leaves were directly mounted without any specimen preparation, and examined at ambient temperature using a variable pressure secondary electron (SE) detector under ca. 15 Pa. Foliar trichomes maintained their shapes and structures without severe surface collapse or charging. The adaxial leaf surface was abundantly covered with different types of trichome. Nonglandular trichomes consisted of a basal cell and a long (up to ca. $300{\mu}m$) stalk. Meanwhile, capitate glandular trichomes had a secretory head and a short or long stalk. Peltate glandular trichomes with globose secretory heads were observed in close contact with the leaf epidermis. Spherical projections on the secretory head showed the secretion process of glandular trichomes. In addition to the trichomes, oval stomata were distributed on the abaxial leaf surface. These results suggest that ambient VP-FESEM can be used to classify the dehydration-sensitive foliar trichomes of succulent plants by SE imaging. At the FESEM resolution, this approach facilitates the rapid and detailed morphological analysis of a variety of trichomes in diverse plant taxa with reduced labor and preparation.

A Study on the Change of Photosynthetic Patterns by the Cladode Orientation of Opuntia lanceolata Haw. (부채仙人掌( Opuntia lanceolata Haw. )의 葉牀莖方位에 따른 光合成樣式의 變化에 관한 硏究)

  • Chang, Nam-Kee;Chang-Duck Jin;Young-Soo Kim
    • The Korean Journal of Ecology
    • /
    • v.7 no.3
    • /
    • pp.99-108
    • /
    • 1983
  • Diurnal acid fluctuation, stomatal resistance, and solar radiation with regard to the cladode orientation were investigated in Opuntia lanceolata Haw. growing at WPeolryeong-ri, Hallim-eup, Chejudo, Korea. Diurnal changes of titratable acidity showed the typical CAM pattern in all investigated cladodes. Water tissue in the cladode had the same pattern of acid fluctuation as mesophyll tissue. Stomatal resistance was low during the night, increased rapidly to be a peak right after sunrise and decreased again thereafter. The southern side of the cladode showed higher stomatal resistance than the northern side during the day time. It suggests that the stomata of the northern side opens under diffuse radiation. The amount of solar radiation varied depending upon the cladode orientation. It is thought that C4 acids move inter and intra mesophyll tissues in the cladode through the unknown pathways. RuBP carboxyulase activity in the cladode was very high at 14:00, but was not significant at 01:00. PEP-carboxylase had high activities both at 14:00 and at 01:00. The results of this study showed the possibility that O. lanceolata Haw. had the C3, C4 and CAM photosynthetic patterns under the environmental conditions at Weolryeong-ri.

  • PDF

Adaptative Characteristics of Some Woody Plants Growing on the Rock Faces ( 1 ) - Morphological Adaptation of Leaves (암반지에 서식하는 식물의 적응적 특성 ( 1 ) - 잎의 형태적 적응)

  • Lim, Joo-Hoon;Zin-Suh Kim
    • The Korean Journal of Ecology
    • /
    • v.14 no.4
    • /
    • pp.371-377
    • /
    • 1991
  • Some morphological characteristics were investigated on the leaves of quercus aliena, hypostomatous species, and lespedeza cyrtobotrya, amphistomatous species, that appeared dominantly on the rock faces in mt.pukhan, mt surak and mt. pulam near seoul. These characteristics were compared with those of normal sites rock faces. All two species growing on the rock faces had thickened leaves with well developed upper epidermis and palisade tissue. Quercus aliena growing on the rock faces showed the leaves with double layer of palisade cells and more regularly arranged spongy parenchyma cells to the lower epidermis. In the case of lespedeza cyrtobotrya, narrower and more lengthened palisade cells and smaller air gaps between the sponge parenchyma cells were observed on the rock faces than those growing in the normal sites. The stomater frequency of the lower epidermis of the tree leaves growing on the rock faces is higher thanthose of normal sites. However, the mean total stomata number of the tree leaves growing on the rock faces are fewer. Most of the morphological characteristics investigated indicate that the plants on the rock faces havesmaller coefficient of variation than those of the normal sites.

  • PDF

A Study on Photosynthesis and Nitrogen Assimilation in Cactus -Portulaca oleracea L.- (Cactus의 광합성과 질소동화작용에 관한 연구 - 한국산 쇠비름(Portulaca oleracea L.) -)

  • 장남기;김희백
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.2
    • /
    • pp.125-142
    • /
    • 1996
  • Crassulacean acid metaholism (CAM) was investigated in leaves and stems of the succulent $C_4$dicot Portulaca oleracea L. Under 14-hour days, stem tissues showed much greater fluctuation of acidity than leaf tissues. But leaf and stem tissues showed almost same CAM-like pattern of acid fluctuation under 8-hour days. Stem tissues of R oleracea grown under the naturai environment showed high CAM activity, but no CAM activity was seen in leaves of those plants. In the naturally growing plants, the rapid acidification was seen in intact stems at dawn, but defoliated stems showed only a gradual increase. RuBP carlboxylase activity was very high at 2:00 P.M. in both leaves and stems. However, its activity at 1:00 A.M. and 5:30 AM. was hardly detected. particularly, activity of PEP carboxylase in leaves was very high in the early morning, though that in stem tissues was little. These results indicate that $CO_2$ passed through open stomata at dawn may be assimilated by PEP carboxylase in leaves, and then $C_4$ products move to stems. The levels of nitrate concentration and of nitrate reductase were higher in stems than in leaves. The levels were also higher in the light than in the dark. It would be suggested that considerable amount of nitrate absorbed from roots ho assimilated in stems, and nitrate transferred to leaves via stem tissues be reduced there. Key words: Portalaca oleracea, Cactus, Photosynthesis, Nitrogen assimilation, Crassulacean acid metabolism (CAM).

  • PDF

Fault Detection of Ceramic Imaging using ART2 Algorithm (ART2 알고리즘을 이용한 세라믹 영상에서의 결함 검출)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2486-2491
    • /
    • 2013
  • There are invisible defects by naked eyes in ceramic material images such as internal stomata, cracks and foreign substances. In this paper we propose a method to detect and extract such defects from ceramic pipe weld zone by applying ART2 learning. In pre-processing, we apply Ends-in Search Stretching to enhance the intensity and then perform fuzzy binarization with triangle type membership function followed by enhanced ART2 that interacts with random input patterns to extract such invisible defects. The experiment verifies that this proposed method is sufficiently effective.

Alteration of Gas Exchange in Rice Leaves Infected with Magnaporthe grisea

  • Yun, Sung-Chul;Kim, Pan-Gi;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.257-263
    • /
    • 2000
  • Infection with rice blast fungus (Magnaporthe grisea) significantly reduced foliar net photosynthesis (A) of rice cultivars: Ilpoom, Hwasung, and Choochung in greenhouse experiments. By measuring the amount of diseased leaf area with a computer image analysis system, the relation between disease severity (DS) and net photosynthetic rate was curvilinearly correlated (r=0.679). Diseased leaves with 35% blast symptom can be predicted to have a 50% reduction of photosynthesis. The disease severity was linearly correlated (r=0.478) with total chlorophyll (chlorophyll a and chlorophyll b) per unit leaf area(TC). Light use efficiency was reduced by the fungal infection according to the light response curves. However, dark respiration (Rd) did not change after the fungal infection (p=0.526). Since the percent of reduction in photosynthesis greatly exceeded the percent of leaf area covered by blast lesions, loss of photosynthetic tissue on an area basis could not by itself account for the reduced photosynthesis. Quantitative photosynthetic reduction can be partially explained by decreasing TC, but cannot be explained by decreasing Rd. By photosynthesis (A)-internal CO$_2$ concentration (C$_i$ curve analysis, it was suggested that the fungal infection reduced ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, ribulose-1,5-bisphosphate (RuBP) regeneration, and inorganic phosphate regeneration. Thus, the reduction of photosynthesis by blast infection was associated with decreased TC and biochemical capacity, which comprises all carbon metabolism after CO$_2$ enters through the stomata.

  • PDF

Arabidopsis PYL8 Plays an Important Role for ABA Signaling and Drought Stress Responses

  • Lim, Chae Woo;Baek, Woonhee;Han, Sang-Wook;Lee, Sung Chul
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.471-476
    • /
    • 2013
  • Plants are frequently exposed to numerous environmental stresses such as dehydration and high salinity, and have developed elaborate mechanisms to counteract the deleterious effects of stress. The phytohormone abscisic acid (ABA) plays a critical role as an integrator of plant responses to water-limited condition to activate ABA signal transduction pathway. Although perception of ABA has been suggested to be important, the function of each ABA receptor remains elusive in dehydration condition. Here, we show that ABA receptor, pyrabactin resistance-like protein 8 (PYL8), functions in dehydration conditions. Transgenic plants overexpressing PYL8 exhibited hypersensitive phenotype to ABA in seed germination, seedling growth and establishment. We found that hypersensitivity to ABA of transgenic plants results in high degrees of stomatal closure in response to ABA leading to low transpiration rates and ultimately more vulnerable to drought than the wild-type plants. In addition, high expression of ABA maker genes also contributes to altered drought tolerance phenotype. Overall, this work emphasizes the importance of ABA signaling by ABA receptor in stomata during defense response to drought stress.