• 제목/요약/키워드: stock price data

검색결과 399건 처리시간 0.027초

Statistical Tests for the Lead-Lag Relationship between the Stock Price and the Business Indicator

  • Kim, Tae-Ho;Lee, Sung-Duck;Cho, Joong-Jae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권1호
    • /
    • pp.41-50
    • /
    • 2007
  • This study attempts to test the lead-lag relationship between the stock price and the business indicator in the multivariate context. It additionally investigates the short and long-run dynamic relationships among the four market variables. The hypothesis that the stock price leads the business indicator is found to be rejected for the whole study period. When structural change is considered, the statistical result appears to reflect the reality. The causal relationships among the variables in the former period are simpler than those in the latter period, and the stock price significantly appears to lead the business indicator. On the other hand, the relationship between the stock price and the business indicator in the latter period appears to prove the recent hypothesis of their coincidence.

  • PDF

주식 투자자의 의사결정 지원을 위한 데이터마이닝 도구 (Data Mining Tool for Stock Investors' Decision Support)

  • 김성동
    • 한국콘텐츠학회논문지
    • /
    • 제12권2호
    • /
    • pp.472-482
    • /
    • 2012
  • 주식시장에는 많은 투자자들이 참여하고 있으며 점점 더 많은 사람이 주식투자에 관심을 가지고 있다. 주식시장에서 위험을 회피하고 수익을 얻기 위해서는 다양한 정보를 바탕으로 정확한 의사결정을 해야한다. 즉 수익을 얻을 수 있는 종목 선택, 적절한 매수-매도 가격의 결정, 그리고 적절한 보유기간 등을 결정해야 한다. 본 논문에서는 개인 주식 투자자의 의사결정 지원을 위한 데이터마이닝 도구를 제안한다. 즉, 개인 투자자가 직접 기계학습 방법을 적용하여 주가예측 모델을 생성할 수 있게 하고, 적절한 매수-매도 가격과 보유기간 등을 결정하는 것을 도와주는 도구를 제안한다. 제안하는 도구는 과거 데이터를 이용하여 투자자 자신의 성향에 맞는 투자에서의 의사결정을 할 수 있도록 지원하는 도구로서 주가데이터 관리, 기계학습 적용을 통한 주가예측 모델 생성, 투자 시뮬레이션 등의 기능을 제공한다. 사용자는 스스로 주가에 영향을 미칠 수 있다고 판단하는 기술적 지표를 선정하고 이를 이용하여 주가예측 모델을 만들고 테스트 할 수 있으며, 적절한 예측모델을 적용하여 시뮬레이션을 수행해 봄으로써 실제로 어느 정도 수익을 얻을 수 있는지 평가하고 적절한 매매 정책을 수립할 수 있다. 제안하는 도구를 이용하여 주식 투자자는 기존의 감정적 판단에 의한 투자가 아닌 객관적 데이터에 의해 검증을 거친 주가예측 모델과 매매정책에 따라 주식투자를 할 수 있어 이전 보다 나은 수익을 기대할 수 있다.

장단기 앙상블 모델과 이미지를 활용한 주가예측 향상 알고리즘 : 석유화학기업을 중심으로 (Stock Price Prediction Improvement Algorithm Using Long-Short Term Ensemble and Chart Images: Focusing on the Petrochemical Industry)

  • 방은지;변희용;조재민
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.157-165
    • /
    • 2022
  • As the stock market is affected by various circumstances including economic and political variables, predicting the stock market is considered a still open problem. When combined with corporate financial statement data analysis, which is used as fundamental analysis, and technical analysis with a short data generation cycle, there is a problem that the time domain does not match. Our proposed method, LSTE the operating profit and market outlook of a petrochemical company and estimates the sales and operating profit of the company, it was possible to solve the above-mentioned problems and improve the accuracy of stock price prediction. Extensive experiments on real-world stock data show that our method outperforms the 8.58% relative improvements on average w.r.t. accuracy.

An Empirical Study on the Comparison of LSTM and ARIMA Forecasts using Stock Closing Prices

  • Gui Yeol Ryu
    • International journal of advanced smart convergence
    • /
    • 제12권1호
    • /
    • pp.18-30
    • /
    • 2023
  • We compared empirically the forecast accuracies of the LSTM model, and the ARIMA model. ARIMA model used auto.arima function. Data used in the model is 100 days. We compared with the forecast results for 50 days. We collected the stock closing prices of the top 4 companies by market capitalization in Korea such as "Samsung Electronics", and "LG Energy", "SK Hynix", "Samsung Bio". The collection period is from June 17, 2022, to January 20, 2023. The paired t-test is used to compare the accuracy of forecasts by the two methods because conditions are same. The null hypothesis that the accuracy of the two methods for the four stock closing prices were the same were rejected at the significance level of 5%. Graphs and boxplots confirmed the results of the hypothesis tests. The accuracies of ARIMA are higher than those of LSTM for four cases. For closing stock price of Samsung Electronics, the mean difference of error between ARIMA and LSTM is -370.11, which is 0.618% of the average of the closing stock price. For closing stock price of LG Energy, the mean difference is -4143.298 which is 0.809% of the average of the closing stock price. For closing stock price of SK Hynix, the mean difference is -830.7269 which is 1.00% of the average of the closing stock price. For closing stock price of Samsung Bio, the mean difference is -4143.298 which is 0.809% of the average of the closing stock price. The auto.arima function was used to find the ARIMA model, but other methods are worth considering in future studies. And more efforts are needed to find parameters that provide an optimal model in LSTM.

데이터마이닝기법을 이용한 주식시장의 이상매매 적출 (Detection of Stock Price Manipulation : A Data Mining Approach)

  • 홍정훈;안성만;위경우
    • 지능정보연구
    • /
    • 제12권4호
    • /
    • pp.15-37
    • /
    • 2006
  • 본 논문은 증권거래소 이상매매 적출업무의 효율성을 제고하기 위해 데이터마이닝 기법을 적용하는 방안에 대해 연구하는 것을 주된 목적으로 한다. 이 과정에서 국내 증권거래소의 이상매매 적출모형과 데이터마이닝을 활용한 해외사례로서 미국 NASD의 ADS를 소개한 뒤, 실증분석에 사용될 자료들을 시세조종 종목과 정상 종목으로 나누어 검토한다. 국내에서 주식시장의 이상매매 적출에 대한 데이터마이닝 기법의 적용에 대한 연구가 없는 상황에서 다양한 입력변수를 만들어 실제로 데이터마이닝 기법들을 적용하여 적출성과를 상호 비교한 결과와 시사점을 기술하였다.

  • PDF

인터넷 뉴스 빅데이터를 활용한 기업 주가지수 예측 (A Prediction of Stock Price Through the Big-data Analysis)

  • 유지돈;이익선
    • 산업경영시스템학회지
    • /
    • 제41권3호
    • /
    • pp.154-161
    • /
    • 2018
  • This study conducted to predict the stock market prices based on the assumption that internet news articles might have an impact and effect on the rise and fall of stock market prices. The internet news articles were tested to evaluate the accuracy by comparing predicted values of the actual stock index and the forecasting models of the companies. This paper collected stock news from the internet, and analyzed and identified the relationship with the stock price index. Since the internet news contents consist mainly of unstructured texts, this study used text mining technique and multiple regression analysis technique to analyze news articles. A company H as a representative automobile manufacturing company was selected, and prediction models for the stock price index of company H was presented. Thus two prediction models for forecasting the upturn and decline of H stock index is derived and presented. Among the two prediction models, the error value of the prediction model (1) is low, and so the prediction performance of the model (1) is relatively better than that of the prediction model (2). As the further research, if the contents of this study are supplemented by real artificial intelligent investment decision system and applied to real investment, more practical research results will be able to be developed.

기업의 빅데이터와 주가 변동성의 관계 검증을 위한 시뮬레이션 (Simulation to Examine the Relationship between Big Data on Each companies and Stock Price.)

  • 김도관
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.134-136
    • /
    • 2017
  • 기업의 주가는 순수한 기업의 활동의 결과뿐만 아니라 투자자들에 의해 형성된 정보와 여론에 의해서 변화할 수 있다. 이러한 점에서 본 연구에서는 기업들에 대한 빅데이터 분석과 주식시장에서의 변화와의 관계를 알아보기 위한 방안을 제시하고 이를 검증하기 위한 시뮬레이션을 실시하고자 한다.

  • PDF

신경회로망을 이용한 종합주가지수의 변화율 예측 (Prediction of Monthly Transition of the Composition Stock Price Index Using Error Back-propagation Method)

  • 노종래;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.896-899
    • /
    • 1991
  • This paper presents the neural network method to predict the Korea composition stock price index. The error back-propagation method is used to train the multi-layer perceptron network. Ten of the various economic indices of the past 7 Nears are used as train data and the monthly transition of the composition stock price index is represented by five output neurons. Test results of this method using the data of the last 18 months are very encouraging.

  • PDF

A GARCH-MIDAS approach to modelling stock returns

  • Ezekiel NN Nortey;Ruben Agbeli;Godwin Debrah;Theophilus Ansah-Narh;Edmund Fosu Agyemang
    • Communications for Statistical Applications and Methods
    • /
    • 제31권5호
    • /
    • pp.535-556
    • /
    • 2024
  • Measuring stock market volatility and its determinants is critical for stock market participants, as volatility spillover effects affect corporate performance. This study adopted a novel approach to analysing and implementing GARCH-MIDAS modelling methods. The classical GARCH as a benchmark and the univariate GARCH-MIDAS framework are the GARCH family models whose forecasting outcomes are examined. The outcome of GARCH-MIDAS analyses suggests that inflation, interest rate, exchange rate, and oil price are significant determinants of the volatility of the Johannesburg Stock Market All Share Index. While for Nigeria, the volatility reacts significantly to the exchange rate and oil price. Furthermore, inflation, exchange rate, interest rate, and oil price significantly influence Ghanaian equity volatility, especially for the long-term volatility component. The significant shock of the oil price and exchange rate to volatility is present in all three markets using the generalized autoregressive conditional heteroscedastic-mixed data sampling (GARCH-MIDAS) framework. The GARCH-MIDAS, with a powerful fusion of the GARCH model's volatility-capturing capabilities and the MIDAS approach's ability to handle mixed-frequency data, predicts the volatility for all variables better than the traditional GARCH framework. Incorporating these two techniques provides an innovative and comprehensive approach to modelling stock returns, making it an extremely useful tool for researchers, financial analysts, and investors.

A Study on the Prediction of Stock Return in Korea's Distribution Industry Using the VKOSPI Index

  • Jeong-Hwan LEE;Gun-Hee LEE;Sam-Ho SON
    • 유통과학연구
    • /
    • 제21권5호
    • /
    • pp.101-111
    • /
    • 2023
  • Purpose: The purpose of this paper is to examine the effect of the VKOSPI index on short-term stock returns after a large-scale stock price shock of individual stocks of firms in the distribution industry in Korea. Research design, data, and methodology: This study investigates the effect of the change of the VKOSPI index or investor mood on abnormal returns after the event date from January 2004 to July 2022. The significance of the abnormal return, which is obtained by subtracting the rate of return estimated by the market model from the rate of actual return on each trading day after the event date, is determined based on T-test and multifactor regression analysis. Results: In Korea's distribution industry, the simultaneous occurrence of a bad investor mood and a large stock price decline, leads to stock price reversals. Conversely, the simultaneous occurrence of a good investor mood and a large-scale stock price rise leads to stock price drifts. We found that the VKOSPI index has strong explanatory power for these reversals and drifts even after considering both company-specific and event-specific factors. Conclusions: In Korea's distribution industry-related stock market, investors show an asymmetrical behavioral characteristic of overreacting to negative moods and underreacting to positive moods.