Rolling stock structures such as bogie frame and car body play an important role for the support of vehicle leading. In general, more than 25 years' durability is needed for them. A lot of study has been carried out for the prediction of the fatigue life of the bogie frame and car body in experimental and theoretical domains. One of the new methods is a probabilistic fatigue lift evaluation. The objective of this paper is to estimate the fatigue lift of the bogie frame of an electric car, which was developed by the Korea Railroad Research Institute (KRRI). We used two approaches. In the first approach probabilistic distribution of S-N curve and limit state function of the equivalent stress of the measured stress spectra are used. In the second approach, limit state function is also used. And load spectra measured by strain gauges are approximated by the two-parameter Weibull distribution. Other probabilistic variables are represented by log-normal and normal distributions. Finally, reliability index and structural integrity of the bogie frame are estimated.
To predict the influence on fish stocks which were caused by environmental change in the fishing ground of shallow sea areas, we have developed the Shallow-Sea Ecological Model(SSEM) which that focuses on living organisms, especially fish and benthos. By applying the SSEM in the Seto-Inland Sea of Japan, we have simulated another aspect of influence on fish stocks that was caused by oxygen deficient water mass and nutrient loads. From the simulated result of the fish stocks, it was indicated that the stock of fish and benthos has shown a relative difference between the western sea and the eastern sea in the Seto-Inland Sea. According the to prediction, results of fish stocks that were caused by oxygen deficient water mass, it was estimated that the pelagicfish stock increases about 6 %, whereas the stocks of demersalfish and benthos decreases about 30% and 70%, respectively. On the other hand, it seemed that there was an increased in the fish stocks of demersalfish and benthos in the eastern sea of Seto-Inland Sea by nutrient loads reduction.
HIONG, Hii King;JALIL, Muhammad Farhan;SENG, Andrew Tiong Hock
The Journal of Asian Finance, Economics and Business
/
제8권8호
/
pp.1-12
/
2021
Altman's Z-score is used to measure a company's financial health and to predict the probability that a company will collapse within 2 years. It is proven to be very accurate to forecast bankruptcy in a wide variety of contexts and markets. The goal of this study is to use Altman's Z-score model to forecast insolvency in non-financial publicly traded enterprises. Non-financial firms are a significant industry in Malaysia, and current trends of consolidation and long-term government subsidies make assessing the financial health of such businesses critical not just for the owners, but also for other stakeholders. The sample of this study includes 84 listed companies in the Kuala Lumpur Stock Exchange. Of the 84 companies, 52 are considered high risk, and 32 are considered low-risk companies. Secondary data for the analysis was gathered from chosen companies' financial reports. The findings of this study show that the Altman model may be used to forecast a company's financial collapse. It dispelled any reservations about the model's legitimacy and the utility of applying it to predict the likelihood of bankruptcy in a company. The findings of this study have significant consequences for investors, creditors, and corporate management. Portfolio managers may make better selections by not investing in companies that have proved to be in danger of failing if they understand the variables that contribute to corporate distress.
본 논문은 주식 매매 시스템을 위한 강화 학습 구조를 제시한다. 매매 시스템에 사용되는 매개변수들은 Q-학습 알고리즘에 의하여 최적화되고, 인공 신경망이 값의 근사치를 구하기 위하여 활용된다 이 구조에서는 서로 유기적으로 협업하는 다중 에이전트를 이용하여 전역적인 추세 예측과 부분적인 매매 전략을 통합하여 개선된 매매 성능을 가능하게 한다. 에이전트들은 서로 통신하여 훈련 에피소드와 학습된 정책을 서로 공유하는데, 이 때 전통적인 Q-학습의 모든 골격을 유지한다. 실험을 통하여, KOSPI 200에서는 제안된 구조에 기반 한 매매 시스템을 통하여 시장 평균 수익률을 상회하며 동시에 상당한 이익을 창출하는 것을 확인하였다. 게다가 위험 관리의 측면에서도 본 시스템은 교사 학습(supervised teaming)에 의하여 훈련된 시스템에 비하여 더 뛰어난 성능을 보여주었다.
본 연구는 거시경제요인이 스포테인먼트 산업에 미치는 영향을 확인하여 그 활용 가치를 발견하기 위한 연구다. 연구를 위해 거시경제요인으로 DJIA, WTI, GP를 선택하였고, 스포테인먼트 산업을 대표할 만한 자료로 NIKE와 Adidas 주가를 선택하였으며, 20년 5,285일간의 거래 자료를 2단계 추출 과정을 거쳐 분석하였다. 분석 결과 첫째, 거시경제요인은 스포테인먼트 산업에 유의한 영향을 미치는 것으로 나타났다. 둘째 시간의 설정, 각 시기의 특성, 그리고 요인 간 관계에 따라 각기 다른 수준의 회귀식이 나타났다. 마지막으로, 시계열분석을 통한 미래 예측 방법인 Durbin-Watson 검증 결과 특정 시기의 특정 요인 간 회귀식은 미래 예측에 활용 가능한 것으로 나타났지만, 각 조건에 따라 각각 다른 결과가 관찰되어 향후 후속 연구가 필요하다 판단된다.
본 연구에서는 철도차량의 대형사고의 주요원인 되는 타고오름 충돌에 대해 이론 모델을 정립하여 선두차량의 타고오름 거동에 대한 이론식을 도출하였다. 이론식을 검증하기 위하여 상용 소프트웨어인 LS-DYNA를 사용하여 이론모델과 동일한 단순 2차원 모델과 실제 동력대차 모델이 적용된 단순 3차원 모델을 만들어 시뮬레이션으로 비교하였다. 타고오름 현상에서 가장 중요한 전두 완충기 수직변위에 대해 시뮬레이션과 이론식을 비교한 결과 최대 편차율은 0.5 [%]과 3.9 [%] 발생하여 이론식이 실제 모델에도 잘 적용될 수 있음을 확인하였다. 또한, 고무 완충기와 유압 버퍼 2가지를 적용한 여러 가지 충돌조건에 대해 이론식을 적용하여 선두 차량 간 타고오름 량을 분석하고, 사고 후 재현 시뮬레이션이나 전두부 충돌완충 설계 시 활용할 수 있는 이론적 방법을 제시하였다.
미세먼지 문제는 최근 우리나라 국민의 최대 관심사로 부상되었고 정부 및 지방자치단체에서도 상당한 노력을 기울이고 있다. 그간 미세먼지와 관련하여 다수의 학술적 연구가 진행되어왔지만 경제 분야의 연구는 상대적으로 미흡하였다. 본 연구에서는 미세먼지가 개별 주식에 어떠한 영향을 끼치는지에 대하여 빅데이터 분석을 통해 알아보고자 한다. 2013년부터 2017년까지 총 5개년을 대상으로 PM10농도 미세먼지 데이터와 미세먼지 테마주 데이터와의 관계를 분석하였다. 연구방법으로는 일반화최소제곱법을 사용한 선형회귀모형을 사용하여 회귀분석을 실시하였다. 연구 결과 미세먼지 농도가 전일에 비해서 증가했을 때 미세먼지 테마주의 주가가 상승하는 것으로 나타났다. 그리고, 2013년부터 2017년까지 주가변동 분석결과 회귀계수 값이 큰 기업은 매년 달라졌다. 5개년 동안 제일 큰 반응을 보인 기업은 오공, 웰크론, 동성제약, 삼일제약, 모나리자 순이었다. 그 중 연도별로 반복적으로 등장하는 기업으로는 모나리자가 2014년, 2015년, 2017년에, 삼일제약은 2015년, 2016년, 2017년에, 웰크론은 2016년, 2017년에 반복적으로 회귀계수가 크게 나타났으며 해당 기업은 미세먼지 농도에 주가가 민감하게 반응하는 기업이라고 사료된다. 향후 PM2.5 측정 데이터가 충분히 쌓이게 된다면 PM2.5의 농도를 독립변수로 한 연구와 비교·분석하는 것도 의미가 있을 것이다. 본 연구에서는 미세먼지 농도만을 독립변수로 하였는데 설명력을 높일 수 있는 변수를 추가한다면 좀 더 의미있는 연구결과를 기대할 수 있을 것이다.
본 연구는 다양한 머신러닝 기법을 통해 코스닥(KOSDAQ) 시장 내 관리종목 지정을 예측할 수 있는 모델에 대해 연구하였다. 증권시장 내 기업이 관리종목으로 지정이 되면 시장에서는 이를 부정적인 정보로 인식하여 해당 기업과 투자자에게 손실을 가져오게 된다. 본 연구를 통해 기업의 재무적 데이터를 바탕으로 조기에 관리종목 지정을 예측하고, 투자자들의 포트폴리오 리스크 관리에 도움을 주기 위한 머신러닝 접근이 타당한지 살펴본다. 본 연구를 위해 활용한 독립변수는 수익성, 안정성, 활동성, 성장성을 나타내는 21개의 재무비율을 활용하였으며, K-IFRS가 적용된 2011년부터 2020년까지 관리종목과 비관리종목의 기업의 재무 데이터를 표본으로 추출하였다. 로지스틱 회귀분석, 의사결정나무, 서포트 벡터 머신, 랜덤 포레스트, LightGBM을 활용하여 관리종목 지정 예측 연구를 수행하였다. 연구결과는 분류 정확도가 82.73%인 LightGBM이 가장 우수한 예측 모형이었으며 분류 정확도가 가장 낮은 예측 모형은 정확도가 71.94%인 의사결정나무였다. 의사결정나무 기반 학습 모형의 변수 중요도의 상위 3개 변수를 확인한 결과 각 모형에서 공통적으로 나온 재무변수는 ROE(당기순이익), 자본금회전율(Capital stock turnover ratio)로 해당 재무변수가 관리종목 지정에 있어 상대적으로 중요한 변수임을 확인하였다. 대체적으로 앙상블을 이용한 학습 모형이 단일 학습 모형보다 예측 성능이 높은 것을 확인하였다. 기존 선행연구가 K-IFRS에 대한 고려를 하지 않았고, 다소 제한된 머신러닝에 의존하였다. 따라서 본 연구의 필요성과 함께 현실적 요구를 충족시키는 결과를 제시하였음을 알 수 있으며, 시장참여자들에게 있어 관리종목 지정에 대한 사전 예측을 확인할 수 있도록 기여했다고 볼 수 있다.
현실세계에서는 광범위한 업무영역에서 대용량의 시계열자료들이 실시간으로 발생되고 있다. 하지만 동적인 특징으로 표현되는 시계열자료들의 이해와 설명을 위한 최적의 모형을 결정하는 일은 쉽지가 않다. 이러한 시계열자료들의 특징을 잘 설명할 수 있는 모형을 추정하기 위하여 본 연구에서는 시계열데이터의 모형추정에 적합한 은닉마아코프모델을 통해 시계열자료의 장, 단기 예측모형을 추정하였고 이를 통해 미래의 운동패턴예측을 확인하였다. 실제 주식시장의 여러 자료들을 통해 최적의 모형추정을 위한 정보기준과 가장 효율적인 자료길이를 통해 모형의 상태수를 정확하게 추정하는지를 확인하였다. 실험결과 유효한 상태의 수 추정과 단기의 예측이 장기예측보다 유사운동패턴 예측률이 더욱 유사함을 확인하였다.
딥러닝은 주가 및 농산물 가격 예측과 같이 데이터를 분석해 일련의 규칙을 발견하고 미래를 예상해 우리의 삶에서 다양한 도움을 주고 있다. 본 연구는 태양광 에너지 사용의 중요성이 늘어나는 상황에서 기상에 따른 태양광 발전 실적을 딥러닝을 통해 분석하고 발전량을 예측한다. 본 연구에서는 시계열 데이터 예측에서 두각을 나타내고 있는 LSTM(Long Short Term Memory network)을 사용한 모델을 제안하며 이미지를 비롯한 다양한 차원의 데이터를 분석할 때 사용되는 CNN(Convolutional Neural Network)과 두 모델을 결합한 CNN-LSTM과의 성능을 비교한다. 세 가지 모델의 성능은 태양광 발전 실적의 실제값과 딥러닝을 통해 예측한 값으로 MSE, RMSE, 결정계수를 계산하여 비교하였고 그 결과 LSTM 모델의 성능이 가장 우수한 것으로 나타났다. 따라서 본 연구는 LSTM을 사용한 태양광 발전량 예측을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.