• 제목/요약/키워드: stock index prediction

검색결과 96건 처리시간 0.025초

LSTM 모델을 이용한 조각투자 상품의 가격 예측: 뮤직카우를 중심으로 (Price Prediction of Fractional Investment Products Using LSTM Algorithm: Focusing on Musicow)

  • 정현조;이재환;서지혜
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.81-94
    • /
    • 2022
  • 최근 고액의 실물자산이나 채권을 분할하여 여러 투자자가 공동으로 투자하는 이른바 조각투자가 인기를 얻고 있다. 2016년 설립된 뮤직카우는 음원 유통에 따른 저작권료 참여 청구권을 조각투자할 수 있는 서비스를 세계 최초로 시작하였다. 본 연구에서는 딥러닝 알고리즘 중 하나인 LSTM 모델을 사용하여 뮤직카우에서 거래되는 저작권료 참여 청구권의 가격을 예측하는 연구를 진행하였다. 청구권의 이전 가격과 거래량, 저작권료와 같은 청구권과 관련된 변수 외에도, 음악저작권료 참여 청구권 시장 상황을 나타내는 종합 지표와 경제 상황을 반영하는 환율, 국고채 금리, 한국종합주가지수도 변수로 사용하였다. 연구 결과 상대적으로 거래량이 낮은 조각투자의 사례에서도 LSTM 모델이 거래가격을 잘 예측하는 것을 확인할 수 있었다.

SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용 (VKOSPI Forecasting and Option Trading Application Using SVM)

  • 라윤선;최흥식;김선웅
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.177-192
    • /
    • 2016
  • 기계학습(Machine Learning)은 인공 지능의 한 분야로, 데이터를 이용하여 기계를 학습시켜 기계 스스로가 데이터 분석 및 예측을 하게 만드는 것과 관련한 컴퓨터 과학의 한 영역을 일컫는다. 그중에서 SVM(Support Vector Machines)은 주로 분류와 회귀 분석을 목적으로 사용되는 모델이다. 어느 두 집단에 속한 데이터들에 대한 정보를 얻었을 때, SVM 모델은 주어진 데이터 집합을 바탕으로 하여 새로운 데이터가 어느 집단에 속할지를 판단해준다. 최근 들어서 많은 금융전문가는 기계학습과 막대한 데이터가 존재하는 금융 분야와의 접목 가능성을 보며 기계학습에 집중하고 있다. 그러면서 각 금융사는 고도화된 알고리즘과 빅데이터를 통해 여러 금융업무 수행이 가능한 로봇(Robot)과 투자전문가(Advisor)의 합성어인 로보어드바이저(Robo-Advisor) 서비스를 발 빠르게 제공하기 시작했다. 따라서 현재의 금융 동향을 고려하여 본 연구에서는 기계학습 방법의 하나인 SVM을 활용하여 매매성과를 올리는 방법에 대해 제안하고자 한다. SVM을 통한 예측대상은 한국형 변동성지수인 VKOSPI이다. VKOSPI는 금융파생상품의 한 종류인 옵션의 가격에 영향을 미친다. VKOSPI는 흔히 말하는 변동성과 같고 VKOSPI 값은 옵션의 종류와 관계없이 옵션 가격과 정비례하는 특성이 있다. 그러므로 VKOSPI의 정확한 예측은 옵션 매매에서의 수익을 낼 수 있는 중요한 요소 중 하나이다. 지금까지 기계학습을 기반으로 한 VKOSPI의 예측을 다룬 연구는 없었다. 본 연구에서는 SVM을 통해 일 중의 VKOSPI를 예측하였고, 예측 내용을 바탕으로 옵션 매매에 대한 적용 가능 여부를 실험하였으며 실제로 향상된 매매 성과가 나타남을 증명하였다.

은퇴 시점과 예측 변동성을 고려한 동적 Glide Path (Dynamic Glide Path using Retirement Target Date and Forecast Volatility)

  • 김선웅
    • 융합정보논문지
    • /
    • 제11권2호
    • /
    • pp.82-89
    • /
    • 2021
  • 본 연구의 목적은 투자자의 은퇴 시점뿐만 아니라 시장의 예측 변동성을 동시에 고려하여 Target Date Fund의 위험자산 편입 비율을 동적으로 조정하는 새로운 Glide Path를 제안하고, 은퇴 시점만 고려하여 위험자산 편입 비율이 정해지는 전통적 Glide Path와 투자 성과를 비교 분석하는 것이다. 시장 변동성의 예측치로는 역사적 변동성, 시계열모형인 GARCH 변동성, 그리고 변동성지수인 VKOSPI를 활용하였으며, 2003년부터 2020년까지의 분석 기간에서 변동성을 고려하는 새로운 동적 Glide Path의 투자 성과가 우수함을 보여주었다. 3가지 변동성 예측모형 모두에서 은퇴 시점만을 고려하는 Glide Path보다 수익률은 더 높고 위험은 더 낮아지면서 투자 성과 지표인 Sharpe Ratio가 개선되었다. 실증 분석 결과는 은퇴예정자뿐만 아니라 Target Date Fund 운용업계에 새로운 Glide Path의 활용 가능성을 제시하고 있다.

Support Vector Machines와 유전자 알고리즘을 이용한 지능형 트레이딩 시스템 개발 (Development of an Intelligent Trading System Using Support Vector Machines and Genetic Algorithms)

  • 김선웅;안현철
    • 지능정보연구
    • /
    • 제16권1호
    • /
    • pp.71-92
    • /
    • 2010
  • 최근 트레이딩 시스템에 대한 관심이 높아지면서, 인공지능을 이용한 지능형 트레이딩 시스템의 개발과 관련한 연구들이 활발하게 이루어지고 있다. 그러나 현재까지 소개된 트레이딩 시스템 관련 연구들은 트레이딩에 적용될 수 있는 다양한 변수들이 실무에서 활용되고 있음에도 불구하고, 주가지수에서 파생된 기술적 지표에만 과도하게 의존하는 경향이 있었다. 또한, 실제 수익창출에 초점이 맞추어진 트레이딩 시스템의 모형보다는 주가 혹은 주가지수의 등락에 대한 정확한 예측에 초점을 맞춰 모형을 개발하려고 하는 한계도 존재했다. 이에 본 연구에서는 기존 연구에서 주로 활용되어 온 기술적 지표 외에 현업에서 유용하게 활용되는 다양한 비가격 변수들을 시스템에 반영함으로서 예측 성과의 개선을 도모하는 동시에, Support Vector Machines 기반의 등락예측모형의 결과를 트레이딩 시스템의 매수, 매도, 혹은 유지의 신호로 해석할 수 있도록 설계된 새로운 형태의 지능형 트레이딩 시스템을 제안한다. 제안시스템의 유용성을 검증하기 위해, 본 연구에서는 2004년 5월부터 2009년 12월까지의 KOSPI200 주가지수에 제안모형을 적용하여 그 성과를 살펴보았다. 그 결과, 제안시스템이 수익률 관점에서 다른 비교모형들에 비해 더 우수한 성과를 도출함을 확인할 수 있었다.

빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축 (Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics)

  • 조남옥;신경식
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.33-56
    • /
    • 2016
  • 대부분의 부도 예측에 관한 연구는 재무 변수를 중심으로 통계적 방법 또는 인공지능 기법을 적용하여 부도 예측 모형을 구축하였다. 그러나 재무비율과 같은 회계 정보를 이용한 부도 예측 모형은 재무 제표 결산 시점과 신용평가 시점 간 시차를 고려하지 않을 뿐만 아니라 해당 산업의 경제적 상황과 같은 외부 환경적인 요소를 반영하기 어렵다는 한계점이 존재하였다. 기업의 부도 여부를 예측하기 위해 정량 정보인 재무 변수만을 이용하는 것에 한계가 있음에도 불구하고 정성 정보를 부도 예측 모형에 반영한 연구는 아직 미흡한 실정이다. 본 연구에서는 재무 변수를 이용하는 기존 부도 예측 모형의 성과를 개선하기 위해 빅데이터 기반의 정성 정보를 추가적인 입력 변수로 활용하는 부도 예측 모형을 제안하였다. 제안 모형의 성과 향상은 정성 정보를 예측 모형에 통합시키기에 적합한 형태로 정보의 유형을 변환시킬 수 있는가에 따라 달려있다. 이에 본 연구에서는 정성 정보 처리를 위한 방법으로 빅데이터 분석 기법 중 하나인 텍스트 마이닝(Text Mining)을 활용하였다. 해당 산업과 관련된 경제 뉴스 데이터로부터 경제 상황에 대한 감성 정보를 추출하기 위해 도메인 중심의 감성 어휘 사전을 구축하고, 구축된 어휘 사전을 기반으로 감성 분석(Sentiment Analysis)을 수행하였다. 형태소 분석 등을 포함한 텍스트 전처리 과정을 거쳐 감성 어휘를 추출하고, 각 어휘에 대한 극성 및 감성 점수를 부여하였다. 분석 결과, 전통적 부도 예측 모형에 경제 뉴스 데이터에서 도출한 정성 정보를 반영하는 것은 모형의 성과를 개선하는 것으로 나타났다. 특히, 경제 상황에 대한 부정적 감정이 기업의 부도 여부를 예측하는 데 더욱 효과적임을 알 수 있었다.

투자자별 거래정보와 머신러닝을 활용한 투자전략의 성과 (Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning)

  • 김경목;김선웅;최흥식
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.65-82
    • /
    • 2021
  • 주식시장에 참여하는 투자자들은 크게 외국인투자자, 기관투자자, 그리고 개인투자자로 구분된다. 외국인투자자 같은 전문투자자 집단은 개인투자자 집단과 비교하여 정보력과 자금력에서 우위를 보이고 있으며, 그 결과 시장 참여자들 사이에는 외국인투자자들이 좋은 투자 성과를 보이는 것으로 알려져 있다. 외국인 투자자들은 근래에는 인공지능을 이용한 투자를 많이 하고 있다. 본 연구의 목적은 투자자별 거래량 정보와 머신러닝을 결합하는 투자전략을 제안하고, 실제 주가와 투자자별 거래량 데이터를 이용하여 제안 모형의 포트폴리오 투자 성과를 분석하는 것이다. 일별 투자자별 매수 수량과 매도 수량 정보는 한국거래소에서 공개하고 있는 자료를 활용하였으며, 여기에 인공신경망을 결합하여 최적의 포트폴리오 전략을 도출하고자 하였다. 본 연구에서는 자기 조직화 지도 모형 인공신경망을 이용하여 투자자별 거래량 데이터를 그룹화하고 그룹화한 데이터를 변환하여 오류역전파 모형을 학습하였다. 학습 후 검증 데이터 예측결과로 매월 포트폴리오 구성을 하도록 개발하였다. 성과 분석을 위해 포트폴리오의 벤치마크를 지정하였고 시장 수익률 비교를 위해 KOSPI200, KOSPI 지수 수익률도 구하였다. 포트폴리오의 동일배분 수익률, 복리 수익률, 연평균 수익률, MDD, 표준편차, 샤프지수, 벤치마크로 지정한 시가총액 상위 10종목의 Buy and Hold 수익률 등을 사용하여 성과 분석을 진행하였다. 분석 결과 포트폴리오가 벤치마크 대비 2배 수익률을 올렸으며 시장 수익률보다 좋은 성과를 보였다. MDD와 표준편차는 포트폴리오와 벤치마크가 비슷한 결과로 성과 대비 비교한다면 포트폴리오가 좋은 성과라고 할 수 있다. 샤프지수도 포트폴리오가 벤치마크와 시장 결과보다 좋은 성과를 내었다. 이를 통해 머신러닝과 투자자별 거래정보 분석을 활용한 포트폴리오 구성 프로그램 개발의 방향을 제시하였고 실제 주식 투자를 위한 프로그램 개발에 활용할 수 있음을 보였다.

카오스 이론 기반 시계열의 내재적 패턴분석: 룰렛과 KOSPI200 지수선물 데이터 대상 (Analysis of Intrinsic Patterns of Time Series Based on Chaos Theory: Focusing on Roulette and KOSPI200 Index Future)

  • 이희철;김홍곤;김희웅
    • 지식경영연구
    • /
    • 제22권4호
    • /
    • pp.119-133
    • /
    • 2021
  • 각 산업에서 대량의 데이터가 생산되면서, 빠른 경영 의사결정을 위해 시계열 패턴 예측 연구가 수많이 진행되고 있다. 하지만 데이터에 내재된 불확실성으로 인해 비선형 시계열 데이터의 특정 패턴을 예측하는 데 한계가 존재하고, 기업경영의 전략적 의사결정 어려움이 존재한다. 또한, 최근 수십 년간 불규칙한 랜덤워크 모형의 시계열 데이터 예측을 위해 산업의 목적에 맞는 금융시장 데이터를 대상으로 다양한 연구가 진행되고 있지만, 특정 규칙을 예측하고 지속가능의 기업목적 달성 어려움이 있다. 본 연구에서는 룰렛 데이터와 금융시장 데이터를 Chaos 분석기법을 이용하여 예측 결과를 비교분석하고 유의미한 결과를 도출하였다. 그리고, 본 연구는 카오스 분석이 시계열 자료를 분석하는데 있어 새로운 방법을 모색하는데 유용함을 확인하였다. 룰렛 게임의 특성을 한국 주가지수 선물의 시계열과 비교 분석하여 추세가 확인되는 경우 예측력을 높일 수 있다는 점을 도출하였으며, 불확실성이 높고 랜덤워크가 존재하는 비선형 시계열 데이터가 특정한 패턴을 가지고 있는지 판단하는데 의의가 있다.

M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발 (Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms)

  • 양훈석;김선웅;최흥식
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.63-83
    • /
    • 2019
  • 투자자들은 기업의 내재가치 분석, 기술적 보조지표 분석 등 복잡한 분석보다 차트(chart)에 나타난 그래프(graph)의 모양으로 매매 시점을 찾는 직관적인 방법을 더 선호하는 편이다. 하지만 패턴(pattern) 분석 기법은 IT 구현의 난이도 때문에 사용자들의 요구에 비해 전산화가 덜 된 분야로 여겨진다. 최근에는 인공지능(artificial intelligence, AI) 분야에서 신경망을 비롯한 다양한 기계학습(machine learning) 기법을 사용하여 주가의 패턴을 연구하는 사례가 많아졌다. 특히 IT 기술의 발전으로 방대한 차트 데이터를 분석하여 주가 예측력이 높은 패턴을 발굴하는 것이 예전보다 쉬워졌다. 지금까지의 성과로 볼 때 가격의 단기 예측력은 높아졌지만, 장기 예측력은 한계가 있어서 장기 투자보다 단타 매매에서 활용되는 수준이다. 이외에 과거 기술력으로 인식하지 못했던 패턴을 기계적으로 정확하게 찾아내는 데 초점을 맞춘 연구도 있지만 찾아진 패턴이 매매에 적합한지 아닌지는 별개의 문제이기 때문에 실용적인 부분에서 취약할 수 있다. 본 연구는 주가 예측력이 있는 패턴을 찾으려는 기존 연구 방법과 달리 패턴들을 먼저 정의해 놓고 확률기반으로 선택해서 매매하는 방법을 제안한다. 5개의 전환점으로 정의한 Merrill(1980)의 M&W 파동 패턴은 32가지의 패턴으로 시장 국면 대부분을 설명할 수 있다. 전환점만으로 패턴을 분류하기 때문에 패턴 인식의 정확도를 높이기 위해 드는 비용을 줄일 수 있다. 32개 패턴으로 만들 수 있는 조합의 수는 전수 테스트가 불가능한 수준이다. 그래서 최적화 문제와 관련한 연구들에서 가장 많이 사용되고 있는 인공지능 알고리즘(algorithm) 중 하나인 유전자 알고리즘(genetic algorithm, GA)을 이용하였다. 그리고 미래의 주가가 과거를 반영한다 해도 같게 움직이지 않기 때문에 전진 분석(walk-forward analysis, WFA)방법을 적용하여 과최적화(overfitting)의 실수를 줄이도록 하였다. 20종목씩 6개의 포트폴리오(portfolio)를 구성하여 테스트해 본 결과에 따르면 패턴 매매에서 가격 변동성이 어느 정도 수반되어야 하며 패턴이 진행 중일 때보다 패턴이 완성된 후에 진입, 청산하는 것이 효과적임을 확인하였다.

간벌강도 및 주기에 따른 동적 흉고직경 생장예측 모형개발 - 기존 수확표 자료를 기반으로 - (Developing Dynamic DBH Growth Prediction Model by Thinning Intensity and Cycle - Based on Yield Table Data -)

  • 김문일;이우균;박태진;곽한빈;변정연;남기준;이경학;손영모;원형규;이상민
    • 한국산림과학회지
    • /
    • 제101권2호
    • /
    • pp.266-278
    • /
    • 2012
  • 본 연구에서는 우리나라 주요 수종을 대상으로 간벌강도 및 주기에 따른 흉고직경생장을 예측할 수 있는 동적생장모형을 개발하였다. 그동안 산림청에서 구축한 정적생장모형인 임분수확표를 이용하여 총 8개 수종에 대한 동적생장모형을 구축하였다. 간벌종류는 하층간벌을 전제로 하였으며, 간벌강도별로 간벌후의 흉고직경변화를 예측할 수 있는 함수식을 구축하였다. 또한, 임령, 지위지수 이외에도 ha당 본수를 설명변수로 하는 흉고직경여 총함수식을 유도하였다. 이와 같이 구축된수확표를 이여 모형을 이용하여 간벌강도 및 주기별로 확표를 이 다양하이여 될 수 있었다. 본 연구를 통해 개발된수확표를 용하여 모형을 이용해 숲가꾸기 등의 산림시업이 산림용하 및 임목축분수변화에 미치는 효과를 파악할 수 있으며, 나아이산림의 탄소흡수능력을 평가하는데 본 연구결과가 유용하게 활용될 수 있을 것이다.

주가지수 파생상품 Life Cycle과 투자자 유형별 거래행태 (Life Cycle of Index Derivatives and Trading Behavior by Investor Types)

  • 오승현;한상범
    • 재무관리연구
    • /
    • 제25권2호
    • /
    • pp.165-190
    • /
    • 2008
  • 선물 및 옵션의 만기결제와 관련된 정보비대칭 상황은 각 투자자 집단의 거래활동에 가시적인 영향을 줄 수 있다. 이러한 가능성을 조사하기 위해서 본 연구는 만기일을 제외한 파생상품의 life cycle을 시간의 경과에 따라 3개의 구간으로 설정한 후, 각 투자자 유형의 거래활동이 각 구간별로 보이는 변화 패턴을 조사하였다. 조사된 KOSPI200 지수 파생상품시장의 투자자 유형별 거래행태는 Foster and Viswanathan(1990)의 전략적 유동성 거래자 모형을 통해서 해석되었다. 한편, 투자자 유형별로 KOSPI200 지수 파생상품의 만기결제와 관련된 정보우위성을 측정 및 비교함으로써 정보비대칭 정도 및 정보거래자의 확인(identification) 문제에 조금 더 접근할 수 있었다. 본 연구의 주요 결과는 다음과 같이 요약된다. 첫째, 투자자 집단의 거래활동은 KOSPI200 지수 파생상품의 life cycle에 따라 3가지 유형(ㄱ자형, L자형, U자형)의 패턴으로 요약된다. ㄱ자형은 만기일 이전 1주일 동안 거래활동을 축소하는 패턴이고, L자형은 만기일 이후 1주일 동안 거래활동을 확대하는 패턴이고, U자형은 만기일 이전 1주일과 만기일 이후 1주일 동안 거래활동을 확대하는 패턴이다. 둘째, 개인투자자는 파생상품 life cycle과 관련하여 대형주 종목군을 대상으로 ㄱ자형 거래패턴(선물만기 기준)과 U자형 거래패턴(옵션 단독만기 기준)을 보인다. 이러한 거래패턴은 Foster and Viswanathan(1990)의 전략적 유동성 거래자 모형의 예상과 일치하였다. 셋째, 파생상품 life cycle과 관련하여 외국인투자자의 거래행태는 부분적으로 전략적 유동성 거래자 모형의 예상과 일치하였으나, 기관투자자의 거래행태는 전략적 유동성 거래자 모형의 예상과 무관하였다. 우리나라 주식시장의 전체 거래규모에서 가장 큰 비중을 차지하는 개인투자자가 파생상품의 만기와 관련하여 전략적으로 유동성 거래를 수행한다는 점은 파생상품의 life cycle이 주식시장에 주기적으로 영향을 주는 중요한 경로임을 의미한다. 본 연구는 이러한 경로를 새로이 규명하였다는 점에서 의미를 가진다.

  • PDF