• Title/Summary/Keyword: stock data

Search Result 1,657, Processing Time 0.025 seconds

Verification and Estimation of the Contributed Concentration of CH4 Emissions Using the WRF-CMAQ Model in Korea (WRF-CMAQ 모델을 이용한 한반도 CH4 배출의 기여농도 추정 및 검증)

  • Moon, Yun-Seob;Lim, Yun-Kyu;Hong, Sungwook;Chang, Eunmi
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.209-223
    • /
    • 2013
  • The purpose of this study was to estimate the contributed concentration of each emission source to $CH_4$ by verifying the simulated concentration of $CH_4$ in the Korean peninsula, and then to compare the $CH_4$ emission used to the $CH_4$ simulation with that of a box model. We simulated the Weather Research Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model to estimate the mean concentration of $CH_4$ during the period of April 1 to 22 August 2010 in the Korean peninsula. The $CH_4$ emissions within the model were adopted by the anthropogenic emission inventory of both the EDGAR of the global emissions and the GHG-CAPSS of the green house gases in Korea, and by the global biogenic emission inventory of the MEGAN. These $CH_4$ emission data were validated by comparing the $CH_4$ modeling data with the concentration data measured at two different location, Ulnungdo and Anmyeondo in Korea. The contributed concentration of $CH_4$ estimated from the domestic emission sources in verification of the $CH_4$ modeling at Ulnungdo was represented in about 20%, which originated from $CH_4$ sources such as stock farm products (8%), energy contribution and industrial processes (6%), wastes (5%), and biogenesis and landuse (1%) in the Korean peninsula. In addition, one that transported from China was about 9%, and the background concentration of $CH_4$ was shown in about 70%. Furthermore, the $CH_4$ emission estimated from a box model was similar to that of the WRF-CMAQ model.

Development of a Detection Model for the Companies Designated as Administrative Issue in KOSDAQ Market (KOSDAQ 시장의 관리종목 지정 탐지 모형 개발)

  • Shin, Dong-In;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.157-176
    • /
    • 2018
  • The purpose of this research is to develop a detection model for companies designated as administrative issue in KOSDAQ market using financial data. Administration issue designates the companies with high potential for delisting, which gives them time to overcome the reasons for the delisting under certain restrictions of the Korean stock market. It acts as an alarm to inform investors and market participants of which companies are likely to be delisted and warns them to make safe investments. Despite this importance, there are relatively few studies on administration issues prediction model in comparison with the lots of studies on bankruptcy prediction model. Therefore, this study develops and verifies the detection model of the companies designated as administrative issue using financial data of KOSDAQ companies. In this study, logistic regression and decision tree are proposed as the data mining models for detecting administrative issues. According to the results of the analysis, the logistic regression model predicted the companies designated as administrative issue using three variables - ROE(Earnings before tax), Cash flows/Shareholder's equity, and Asset turnover ratio, and its overall accuracy was 86% for the validation dataset. The decision tree (Classification and Regression Trees, CART) model applied the classification rules using Cash flows/Total assets and ROA(Net income), and the overall accuracy reached 87%. Implications of the financial indictors selected in our logistic regression and decision tree models are as follows. First, ROE(Earnings before tax) in the logistic detection model shows the profit and loss of the business segment that will continue without including the revenue and expenses of the discontinued business. Therefore, the weakening of the variable means that the competitiveness of the core business is weakened. If a large part of the profits is generated from one-off profit, it is very likely that the deterioration of business management is further intensified. As the ROE of a KOSDAQ company decreases significantly, it is highly likely that the company can be delisted. Second, cash flows to shareholder's equity represents that the firm's ability to generate cash flow under the condition that the financial condition of the subsidiary company is excluded. In other words, the weakening of the management capacity of the parent company, excluding the subsidiary's competence, can be a main reason for the increase of the possibility of administrative issue designation. Third, low asset turnover ratio means that current assets and non-current assets are ineffectively used by corporation, or that asset investment by corporation is excessive. If the asset turnover ratio of a KOSDAQ-listed company decreases, it is necessary to examine in detail corporate activities from various perspectives such as weakening sales or increasing or decreasing inventories of company. Cash flow / total assets, a variable selected by the decision tree detection model, is a key indicator of the company's cash condition and its ability to generate cash from operating activities. Cash flow indicates whether a firm can perform its main activities(maintaining its operating ability, repaying debts, paying dividends and making new investments) without relying on external financial resources. Therefore, if the index of the variable is negative(-), it indicates the possibility that a company has serious problems in business activities. If the cash flow from operating activities of a specific company is smaller than the net profit, it means that the net profit has not been cashed, indicating that there is a serious problem in managing the trade receivables and inventory assets of the company. Therefore, it can be understood that as the cash flows / total assets decrease, the probability of administrative issue designation and the probability of delisting are increased. In summary, the logistic regression-based detection model in this study was found to be affected by the company's financial activities including ROE(Earnings before tax). However, decision tree-based detection model predicts the designation based on the cash flows of the company.

A Single Index Approach for Time-Series Subsequence Matching that Supports Moving Average Transform of Arbitrary Order (단일 색인을 사용한 임의 계수의 이동평균 변환 지원 시계열 서브시퀀스 매칭)

  • Moon Yang-Sae;Kim Jinho
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.42-55
    • /
    • 2006
  • We propose a single Index approach for subsequence matching that supports moving average transform of arbitrary order in time-series databases. Using the single index approach, we can reduce both storage space overhead and index maintenance overhead. Moving average transform is known to reduce the effect of noise and has been used in many areas such as econometrics since it is useful in finding overall trends. However, the previous research results have a problem of occurring index overhead both in storage space and in update maintenance since tile methods build several indexes to support arbitrary orders. In this paper, we first propose the concept of poly-order moving average transform, which uses a set of order values rather than one order value, by extending the original definition of moving average transform. That is, the poly-order transform makes a set of transformed windows from each original window since it transforms each window not for just one order value but for a set of order values. We then present theorems to formally prove the correctness of the poly-order transform based subsequence matching methods. Moreover, we propose two different subsequence matching methods supporting moving average transform of arbitrary order by applying the poly-order transform to the previous subsequence matching methods. Experimental results show that, for all the cases, the proposed methods improve performance significantly over the sequential scan. For real stock data, the proposed methods improve average performance by 22.4${\~}$33.8 times over the sequential scan. And, when comparing with the cases of building each index for all moving average orders, the proposed methods reduce the storage space required for indexes significantly by sacrificing only a little performance degradation(when we use 7 orders, the methods reduce the space by up to 1/7.0 while the performance degradation is only $9\%{\~}42\%$ on the average). In addition to the superiority in performance, index space, and index maintenance, the proposed methods have an advantage of being generalized to many sorts of other transforms including moving average transform. Therefore, we believe that our work can be widely and practically used in many sort of transform based subsequence matching methods.

Study on the Factors Influencing the Investment Performance of Domestic Venture Capital Funds (국내 벤처펀드의 투자성과에 영향을 미치는 요인에 관한 연구)

  • InMo Yeo;HyeonJu Park;KwangYong Gim
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.5
    • /
    • pp.63-75
    • /
    • 2023
  • This study conducted empirical analysis on the factors affecting the investment performance of 205 domestic venture funds (with a total liquidation amount of 7.25 trillion KRW) newly formed from 2007 to 2017 and completely liquidated as of the end of 2022. Due to the nature of private equity funds, obtaining empirical data is extremely challenging, especially for data post-COVID-19 era liquidations. Nevertheless, despite these challenges, it is meaningful to analyze the impact on the investment returns of domestic venture funds using the most recent data available from the past 10 years. This study categorized the factors influencing venture fund performance into external environmental factors and internal factors. External environmental factors included "economic cycles," "stock markets," "venture markets," and "exit markets," while internal factors included the fund management company's capabilities in terms of "experience," "professional personnel," and "assets under management (AUM)." The fund structure was also categorized into "fund size" and "fund length" for comparative analysis. In summary, the analysis yielded the following results: First, the 3-year government bond yield, which represents economic cycles well, was found to have a significant impact on fund performance. Second, the average 3-month KOSDAQ index return after fund formation had a statistically significant positive effect on fund performance. Third, the number of IPOs, indicating the competition intensity at the time of venture fund liquidation, was shown to have a negative effect on fund performance. Fourth, it was observed that the larger the AUM of the fund management company, the better the fund's returns. Finally, venture fund returns showed variations depending on the year of formation (Vintage). Therefore, when individuals consider investing in venture funds, it is considered a highly effective investment strategy to construct an investment portfolio taking into account not only external environmental factors and internal fund factors but also the vintage year.

  • PDF

Alteration and Mineralization in the Xiaoxinancha Porphyry Copper Deposit, Yianbin, China: Fluid Inclusion and Sulfur Isotope Study (중국 연변 쇼시난차 반암동 광상의 광화작용 및 변질작용: 유체포유물 및 황동위원소 연구)

  • Seong-Taek Yun;Chil-Sup So;Bai-Lu Jin;Chul-Ho Heo;Seung-Jun Youm
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.211-220
    • /
    • 2002
  • The Xiaoxinancha Cu-Au deposit in the Jilin province, located in NNE 800 km of Beijing, is hosted by diorite. The ore mineralization of Xiaoxinancha Cu-Au deposit show a stockwork occurrence that is concentrated on the potassic and phyllic alteration zones. The Xiaoxinancha Cu-Au deposit in the south is being mined with its reserves grading 0.8% Cu, 3.64 g/t Au and 16.8 g/t Ag and in the north, grading 0.63% Cu, 3.80 g/t Au and 6.8 glt Ag. The alteration assemblage occurs as a supergene blanket over deposit. Hydrothermal alteration at the Xiaoxinancha Cu-Au deposit is centered about the stock and was extensively related to the emplacement of the stock. Early hydrothermal alteration was dominantly potassic and followed by propylitic alteration. Chalcocite, often associated with hematite, account for the ore-grade copper, while chalcopyrite, bornite, quartz, epidote, chlorite and calcite constitute the typical gangue assemblage. Other minor opaque phases include pyrite, marcasite, native gold, electrum, hessite, hedleyite, volynskite, galenobismutite, covellite and goethite. Fluid inclusion data indicate that the formation of this porphyry copper deposit is thought to be a result of cooling followed by mixing with dilute and cooler meteoric water with time. In stage II vein, early boiling occurred at 497$^{\circ}$C was succeeded by the occurrence of halite-bearing type III fluid inclusion with homogenization temperature as much as 100$^{\circ}$C lower. The salinities of type 1II fluid inclusion in stage II vein are 54.3 to 66.9 wt.% NaCI + KCI equiv. at 383$^{\circ}$ to 495$^{\circ}$C, indicating the formation depth less than 1 km. Type I cupriferous fluids in stage III vein have the homogenization temperatures and salinity of 168$^{\circ}$ to 365$^{\circ}$C and 1.1 to 9.0 wt.% NaCI equiv. These fluid inclusions in stage III veins were trapped in quartz veins containing highly fractured breccia, indicating the predominance of boiling evidence. This corresponds to hydrostatic pressure of 50 to 80 bars. The $\delta$$^{34}S$ value of sulfide minerals increase slightly with paragenetic time and yield calculated $\delta$$^{34}S_{H2S}$ values of 0.8 to 3.7$\textperthousand$. There is no mineralogical evidence that fugacity of oxygen decreased, and it is thought that the oxygen fugacity of the mineralizing fluids have been buffered through reaction with magnetite. We interpreted the range of the calculated $\delta$$^{34}S_{H2S}$ values for sulfides to represent the incorporation of sulfur from two sources into the Xiaoxinancha Cu-Au hydrothermal fluids: (1) an isotopically light source with a $\delta$$^{34}S$ value of I to 2$\textperthousand$, probably a Mesozoic granitoid related to the ore mineralization. We can infer from the fact that diorite as the host rock in the Xiaoxinancha Cu-Au deposit area intruded plagiogranite; (2) an isotopically heavier source with a $\delta$$^{34}S$ value of > 4.0$\textperthousand$, probably the local porphyry.

A Study on Risk Parity Asset Allocation Model with XGBoos (XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구)

  • Kim, Younghoon;Choi, HeungSik;Kim, SunWoong
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.135-149
    • /
    • 2020
  • Artificial intelligences are changing world. Financial market is also not an exception. Robo-Advisor is actively being developed, making up the weakness of traditional asset allocation methods and replacing the parts that are difficult for the traditional methods. It makes automated investment decisions with artificial intelligence algorithms and is used with various asset allocation models such as mean-variance model, Black-Litterman model and risk parity model. Risk parity model is a typical risk-based asset allocation model which is focused on the volatility of assets. It avoids investment risk structurally. So it has stability in the management of large size fund and it has been widely used in financial field. XGBoost model is a parallel tree-boosting method. It is an optimized gradient boosting model designed to be highly efficient and flexible. It not only makes billions of examples in limited memory environments but is also very fast to learn compared to traditional boosting methods. It is frequently used in various fields of data analysis and has a lot of advantages. So in this study, we propose a new asset allocation model that combines risk parity model and XGBoost machine learning model. This model uses XGBoost to predict the risk of assets and applies the predictive risk to the process of covariance estimation. There are estimated errors between the estimation period and the actual investment period because the optimized asset allocation model estimates the proportion of investments based on historical data. these estimated errors adversely affect the optimized portfolio performance. This study aims to improve the stability and portfolio performance of the model by predicting the volatility of the next investment period and reducing estimated errors of optimized asset allocation model. As a result, it narrows the gap between theory and practice and proposes a more advanced asset allocation model. In this study, we used the Korean stock market price data for a total of 17 years from 2003 to 2019 for the empirical test of the suggested model. The data sets are specifically composed of energy, finance, IT, industrial, material, telecommunication, utility, consumer, health care and staple sectors. We accumulated the value of prediction using moving-window method by 1,000 in-sample and 20 out-of-sample, so we produced a total of 154 rebalancing back-testing results. We analyzed portfolio performance in terms of cumulative rate of return and got a lot of sample data because of long period results. Comparing with traditional risk parity model, this experiment recorded improvements in both cumulative yield and reduction of estimated errors. The total cumulative return is 45.748%, about 5% higher than that of risk parity model and also the estimated errors are reduced in 9 out of 10 industry sectors. The reduction of estimated errors increases stability of the model and makes it easy to apply in practical investment. The results of the experiment showed improvement of portfolio performance by reducing the estimated errors of the optimized asset allocation model. Many financial models and asset allocation models are limited in practical investment because of the most fundamental question of whether the past characteristics of assets will continue into the future in the changing financial market. However, this study not only takes advantage of traditional asset allocation models, but also supplements the limitations of traditional methods and increases stability by predicting the risks of assets with the latest algorithm. There are various studies on parametric estimation methods to reduce the estimated errors in the portfolio optimization. We also suggested a new method to reduce estimated errors in optimized asset allocation model using machine learning. So this study is meaningful in that it proposes an advanced artificial intelligence asset allocation model for the fast-developing financial markets.

Diversity, Spatial Distribution and Ecological Characteristics of Relict Forest Trees in South Korea (한국 산림유존목의 다양성, 공간 분포 및 생태 특성)

  • CHO, Hyun-Je;Lee, Cheol-Ho;Shin, Joon-Hwan;Bae, Kwan-Ho;Cho, Yong-Chan;Kim, Jun-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.4
    • /
    • pp.401-413
    • /
    • 2016
  • Forest resources utilization and variable disturbance history have been affected the rarity and conservation value of forest relict trees, which served as habitat for forest biodiversity, important carbon stock and cultural role include human and natural history in South Korea. This study was conducted to establish the baseline data for forest resources conservation by clarifying species diversity, spatial distribution and ecological characteristics (individual and habitat) of forest relict trees (DBH > 300 cm) based on the data getting from mountain trail, high resolution aerial photos and field professionals and field survey. As results, 54 taxa (18 family 32 genus 48 species 1 subspecies 3 variety and 2 form) as about 22% of tree species in Korea was identified in the field. 837 individuals of forest relict trees were observed and the majority of the trees was in Pinaceae, deciduous Fagaceae and Rosaceae, which families are abundant in population diversity. High elevation area was important to relict trees as mean altitudinal distribution was 1,200 m a.s.l as likely affected by human activity gradients and mid-steep slope and North aspect was important environment for the trees remain. Many individuals exhibited 'damage larger branch' (55.6%) and consequent relatively lower mean canopy coverages (below 80%). Synthetically, present diversity and abundance of relict forest trees in South Korea were the result of complex process among climate variation, local weather and biological factors and the trees of big and old were estimated to important forest biodiversity elements. In the future, clarifying the role and function of relict trees in forest ecosystem, in- and ex- situ programmes for important trees and habitat, and activities for building the background of conservation policy such as "Guideline for identifying and measurement of forest relict trees".

The Correlations between Renminbi Fluctuations and Financial Results of Venture Companies in the Floating Exchange Rate (변동환율제도하의 위안화 환율변동과 벤처기업의 재무성과 간 상관관계 연구)

  • Sun, Zhong-Yuan;Chang, Seog-Ju;Na, Seung-Hwa
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.5 no.1
    • /
    • pp.45-67
    • /
    • 2010
  • On July 21st in 2005, People's Bank of China (PBOC) turned the currency peg against the U.S. dollar into managed currency system based on a basket of unnamed currencies under China's exchanged rate regime. This change means that China's enterprises are not free from currency fluctuations. The purpose of this study is to analyze the relations between Renminbi fluctuations in the floating exchange rate and financial results of venture companies. The process and outcomes of this study are as follows, First, in order to measure the financial results of venture companies, I choose venture companies in Shandong Province listed on the Shanghai Stock Exchange (SSE) at random and several quarter financial sheets according to safety ratios, profitability ratios, growth ratios, activity ratios. Second, I arrange the daily Renminbi exchange rate data announced from July 21st, 2005 to December 31st, 2008 by PBOC into the quarterly data. Third, in order to confirm the relations between Renminbi fluctuations and financial results of venture companies, I carry out Pearson's correlation analysis. As a result, the revaluation of the Chinese Renminbi has weakly negative effects on debt ratio, total assets turnover ratio and equity turnover ratio in statistics. But the revaluation of the Chinese Renminbi is not related to other financial index in statistics. The result of this study is that the revaluation of the Chinese Renminbi has little influence on the export and import of Chinese venture companies and certifies the fact that Chinese venture companies have much foreign currency assets. In addition to avoid the currency exposure risk, this study shows the effective method about currency exposure risk which adjusts proportion of Renminbi to foreign currency.

  • PDF

Assessment and Prediction of Stand Yield in Cryptomeria japonica Stands (삼나무 임분수확량 평가 및 예측)

  • Son, Yeong Mo;Kang, Jin Taek;Hwang, Jeong Sun;Park, Hyun;Lee, Kang Su
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.3
    • /
    • pp.421-426
    • /
    • 2015
  • The objective of this paper is to look into the growth of Cryptomeria japonica stand in South Korea along with the evaluation on their yields, followed by their carbon stocks and removals. A total of 106 sample plots were selected from Jeonnam, Gyeongnam, and Jeju, where the groups of standard are grown. We only used 92 plots data except outlier. As part of the analysis, the Weibull diameter distribution was applied. In order to estimate the diameter distribution, the growth estimation equation for each of the growth factors including the height, the diameter at breast height, and the basal area was drafted out and the verification for each equation was examined. The site index for figuring out the forest productivity of Cryptomeria japonica stand for each district was also developed as a Schumacher model and 30yr was used as a reference age for the estimation of the site index. It was found that the site index for Cryptomeria japonica stand in South Korea ranges from 10 to 16 and this result was used as a standard for developing the stand yield table. According to the site 14 in the stand yield table, the mean annual increment (MAI) of the Cryptomeria japonica reaches $7.6m^3/ha$ on its 25yr and its growing stock is estimated to be at $190.1m^3/ha$. This volume is about $20m^3$ as high as that of the Chamaesyparis obtusa. Furthermore, the annual carbon absorptions for a Cryptomeria japonica stand reached the peak at 25yr, which is 2.14 tC/ha/yr, $7.83tCO_2/ha/yr$. When compared to the other conifers, this rate is slightly higher than that of a Chamaecyparis obtusa ($7.5tCO_2/ha/yr$) but lower than that of the Pinus koraiensis ($10.4tCO_2/ha/yr$) and Larix kaempferi ($11.2tCO_2/ha/yr$). With such research result as a base, it is necessary to come up with the ways to enhance the utilization of Cryptomeria japonica as timbers, besides making use of their growth data.

Framework of Stock Market Platform for Fine Wine Investment Using Consortium Blockchain (공유경제 체제로서 컨소시엄 블록체인을 활용한 와인투자 주식플랫폼 프레임워크)

  • Chung, Yunkyeong;Ha, Yeyoung;Lee, Hyein;Yang, Hee-Dong
    • Knowledge Management Research
    • /
    • v.21 no.3
    • /
    • pp.45-65
    • /
    • 2020
  • It is desirable to invest in wine that increases its value, but wine investment itself is unfamiliar in Korea. Also, the process itself is unreasonable, and information is often forged, because pricing in the wine market is done by a small number of people. With the right solution, however, the wine market can be a desirable investment destination in that the longer one invests, the higher one can expect. Also, it is expected that the domestic wine consumption market will expand through the steady increase in domestic wine imports. This study presents the consortium block chain framework for revitalizing the wine market and enhancing transparency as the "right solution" of the nation's wine investment market. Blockchain governance can compensate for the shortcomings of the wine market because it guarantees desirable decision-making rights and accountability. Because the data stored in the block chain can be checked by consumers, it reduces the likelihood of counterfeit wine appearing and complements the process of unreasonably priced. In addition, digitization of assets resolves low cash liquidity and saves money and time throughout the supply chain through smart contracts, lowering entry barriers to wine investment. In particular, if the governance of the block chain is composed of 'chateau-distributor-investor' through consortium blockchains, it can create a desirable wine market. The production process is stored in the block chain to secure production costs, set a reasonable launch price, and efficiently operate the distribution system by storing the distribution process in the block chain, and forecast the amount of orders for futures trading. Finally, investors make rational decisions by viewing all of these data. The study presented a new perspective on alternative investment in that ownership can be treated like a share. We also look forward to the simplification of food import procedures and the formation of trust within the wine industry by presenting a framework for wine-owned sales. In future studies, we would like to expand the framework to study the areas to be applied.