• 제목/요약/키워드: stochastic structural mechanics

검색결과 137건 처리시간 0.03초

Crack growth life model for fatigue susceptible structural components in aging aircraft

  • Chou, Karen C.;Cox, Glenn C.;Lockwood, Allison M.
    • Structural Engineering and Mechanics
    • /
    • 제17권1호
    • /
    • pp.29-50
    • /
    • 2004
  • A total life model was developed to assess the service life of aging aircraft. The primary focus of this paper is the development of crack growth life projection using the response surface method. Crack growth life projection is a necessary component of the total life model. The study showed that the number of load cycles N needed for a crack to propagate to a specified size can be linearly related to the geometric parameter, material, and stress level of the component considered when all the variables are transformed to logarithmic values. By the Central Limit theorem, the ln N was approximated by Gaussian distribution. This Gaussian model compared well with the histograms of the number of load cycles generated from simulated crack growth curves. The outcome of this study will aid engineers in designing their crack growth experiments to develop the stochastic crack growth models for service life assessments.

A novel grey TMD control for structures subjected to earthquakes

  • Z.Y., Chen;Ruei-Yuan, Wang;Yahui, Meng;Timothy, Chen
    • Earthquakes and Structures
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2023
  • A model for calculating structure interacted mechanics is proposed. A structural interaction model and controller design based on tuned mass damping (TMD) was developed to control the induced vibration. A key point is to introduce a new analytical model to evaluate the properties of the TMD that recognizes the motion-dependent nonlinear response observed in the simulations. Aiming at the problem of increased current harmonics and low efficiency of permanent magnet synchronous motors for electric vehicles due to dead time effect, a dead time compensation method based on neural network filter and current polarity detection is proposed. Firstly, the DC components and the higher harmonic components of the motor currents are obtained by virtue of what the neural network filters and the extracted harmonic currents are adjusted to the required compensation voltages by virtue of what the neural network filters. Then, the extracted DC components are used for current polarity dead time compensation control to avert the false compensation when currents approach zero. The neural network filter method extracts the required compensation voltages from the speed component and the current polarity detection compensation method obtains the required compensation voltages by discriminating the current polarity. The combination of the two methods can more precisely compensate the dead time effect of the control system to improve the control performance. Furthermore, based on the relaxed method, the intelligent approach of stability criterion can be regulated appropriately and the artificial TMD was found to be effective in reducing cross-wind vibrations.

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.

Probabilistic study on buildings with MTMD system in different seismic performance levels

  • Etedali, Sadegh
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.429-441
    • /
    • 2022
  • A probabilistic assessment of the seismic-excited buildings with a multiple-tuned-mass-damper (MTMD) system is carried out in the presence of uncertainties of the structural model, MTMD system, and the stochastic model of the seismic excitations. A free search optimization procedure of the individual mass, stiffness and, damping parameters of the MTMD system based on the snap-drift cuckoo search (SDCS) optimization algorithm is proposed for the optimal design of the MTMD system. Considering a 10-story structure in three cases equipped with single tuned mass damper (STMS), 5-TMD and 10-TMD, sensitivity analyses are carried out using Sobol' indices based on the Monte Carlo simulation (MCS) method. Considering different seismic performance levels, the reliability analyses are done using MCS and kriging-based MCS methods. The results show the maximum structural responses are more affected by changes in the PGA and the stiffness coefficients of the structural floors and TMDs. The results indicate the kriging-based MCS method can estimate the accurate amount of failure probability by spending less time than the MCS. The results also show the MTMD gives a significant reduction in the structural failure probability. The effect of the MTMD on the reduction of the failure probability is remarkable in the performance levels of life safety and collapse prevention. The maximum drift of floors may be reduced for the nominal structural system by increasing the TMDs, however, the complexity of the MTMD model and increasing its corresponding uncertainty sources can be caused a slight increase in the failure probability of the structure.

Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties

  • Lal, Achchhe;Singh, B.N.;Kumar, Rakesh
    • Structural Engineering and Mechanics
    • /
    • 제27권2호
    • /
    • pp.199-222
    • /
    • 2007
  • Composite laminated structures supported on elastic foundations are being increasingly used in a great variety of engineering applications. Composites exhibit larger dispersion in their material properties compared to the conventional materials due to large number of parameters associated with their manufacturing and fabrication processes. And also the dispersion in elastic foundation stiffness parameter is inherent due to inaccurate modeling and determination of elastic foundation properties in practice. For a better modeling of the material properties and foundation, these are treated as random variables. This paper deals with effects of randomness in material properties and foundation stiffness parameters on the free vibration response of laminated composite plate resting on an elastic foundation. A $C^0$ finite element method has been used for arriving at an eigen value problem. Higher order shear deformation theory has been used to model the displacement field. A mean centered first order perturbation technique has been employed to handle randomness in system properties for obtaining the stochastic characteristic of frequency response. It is observed that small amount of variations in random material properties and foundation stiffness parameters significantly affect the free vibration response of the laminated composite plate. The results have been compared with those available in the literature and an independent Monte Carlo simulation.

A new adaptive mesh refinement strategy based on a probabilistic error estimation

  • Ziaei, H.;Moslemi, H.
    • Structural Engineering and Mechanics
    • /
    • 제74권4호
    • /
    • pp.547-557
    • /
    • 2020
  • In this paper, an automatic adaptive mesh refinement procedure is presented for two-dimensional problems on the basis of a new probabilistic error estimator. First-order perturbation theory is employed to determine the lower and upper bounds of the structural displacements and stresses considering uncertainties in geometric sizes, material properties and loading conditions. A new probabilistic error estimator is proposed to reduce the mesh dependency of the responses dispersion. The suggested error estimator neglects the refinement at the critical points with stress concentration. Therefore, the proposed strategy is combined with the classic adaptive mesh refinement to achieve an optimal mesh refined properly in regions with either high gradients or high dispersion of the responses. Several numerical examples are illustrated to demonstrate the efficiency, accuracy and robustness of the proposed computational algorithm and the results are compared with the classic adaptive mesh refinement strategy described in the literature.

Vibration analysis of a uniform beam traversed by a moving vehicle with random mass and random velocity

  • Chang, T.P.;Liu, M.F.;O, H.W.
    • Structural Engineering and Mechanics
    • /
    • 제31권6호
    • /
    • pp.737-749
    • /
    • 2009
  • The problem of estimating the dynamic response of a distributed parameter system excited by a moving vehicle with random initial velocity and random vehicle body mass is investigated. By adopting the Galerkin's method and modal analysis, a set of approximate governing equations of motion possessing time-dependent uncertain coefficients and forcing function is obtained, and then the dynamic response of the coupled system can be calculated in deterministic sense. The statistical characteristics of the responses of the system are computed by using improved perturbation approach with respect to mean value. This method is simple and useful to gather the stochastic structural response due to the vehicle-passenger-bridge interaction. Furthermore, some of the statistical numerical results calculated from the perturbation technique are checked by Monte Carlo simulation.

A dynamical stochastic finite element method based on the moment equation approach for the analysis of linear and nonlinear uncertain structures

  • Falsone, Giovanni;Ferro, Gabriele
    • Structural Engineering and Mechanics
    • /
    • 제23권6호
    • /
    • pp.599-613
    • /
    • 2006
  • A method for the dynamical analysis of FE discretized uncertain linear and nonlinear structures is presented. This method is based on the moment equation approach, for which the differential equations governing the response first and second-order statistical moments must be solved. It is shown that they require the cross-moments between the response and the random variables characterizing the structural uncertainties, whose governing equations determine an infinite hierarchy. As a consequence, a closure scheme must be applied even if the structure is linear. In this sense the proposed approach is approximated even for the linear system. For nonlinear systems the closure schemes are also necessary in order to treat the nonlinearities. The complete set of equations obtained by this procedure is shown to be linear if the structure is linear. The application of this procedure to some simple examples has shown its high level of accuracy, if compared with other classical approaches, such as the perturbation method, even for low levels of closures.

Robust design of liquid column vibration absorber in seismic vibration mitigation considering random system parameter

  • Debbarma, Rama;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • 제53권6호
    • /
    • pp.1127-1141
    • /
    • 2015
  • The optimum design of liquid column dampers in seismic vibration control considering system parameter uncertainty is usually performed by minimizing the unconditional response of a structure without any consideration to the variation of damper performance due to uncertainty. However, the system so designed may be sensitive to the variations of input system parameters due to uncertainty. The present study is concerned with robust design optimization (RDO) of liquid column vibration absorber (LCVA) considering random system parameters characterizing the primary structure and ground motion model. The RDO is obtained by minimizing the weighted sum of the mean value of the root mean square displacement of the primary structure as well as its standard deviation. A numerical study elucidates the importance of the RDO procedure for design of LCVA system by comparing the RDO results with the results obtained by the conventional stochastic structural optimization procedure and the unconditional response based optimization.

Multi-time probability density functions of the dynamic non-Gaussian response of structures

  • Falsone, Giovanni;Laudani, Rossella
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.631-641
    • /
    • 2020
  • In the present work, an approach for the multiple time probabilistic characterization of the response of linear structural systems subjected to random non-Gaussian processes is presented. Its fundamental property is working directly on the multiple time probability density functions of the actions and of the response. This avoids of passing through the evaluation of the response statistical moments at multiple time or correlations, reducing the computational effort in a consistent measure. This approach is the extension to the multiple time case of a previously published dynamic Probability Transformation Method (PTM) working on a single evolution of the response statistics. The application to some simple examples has revealed the efficiency of the method, both in terms of computational effort and in terms of accuracy.