• 제목/요약/키워드: stochastic simulation.

검색결과 786건 처리시간 0.026초

Stochastic vibration analysis of functionally graded beams using artificial neural networks

  • Trinh, Minh-Chien;Jun, Hyungmin
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.529-543
    • /
    • 2021
  • Inevitable source-uncertainties in geometry configuration, boundary condition, and material properties may deviate the structural dynamics from its expected responses. This paper aims to examine the influence of these uncertainties on the vibration of functionally graded beams. Finite element procedures are presented for Timoshenko beams and utilized to generate reliable datasets. A prerequisite to the uncertainty quantification of the beam vibration using Monte Carlo simulation is generating large datasets, that require executing the numerical procedure many times leading to high computational cost. Utilizing artificial neural networks to model beam vibration can be a good approach. Initially, the optimal network for each beam configuration can be determined based on numerical performance and probabilistic criteria. Instead of executing thousands of times of the finite element procedure in stochastic analysis, these optimal networks serve as good alternatives to which the convergence of the Monte Carlo simulation, and the sensitivity and probabilistic vibration characteristics of each beam exposed to randomness are investigated. The simple procedure presented here is efficient to quantify the uncertainty of different stochastic behaviors of composite structures.

확률적 시뮬레이션 기반 AGV 배차 (AGV Dispatching with Stochastic Simulation)

  • 최이;박태진;류광렬
    • 한국항해항만학회지
    • /
    • 제32권10호
    • /
    • pp.837-844
    • /
    • 2008
  • 자동화 컨테이너 터미널에서 안벽크레인, AGV (Automated Guided Vehicle)와 같은 하역장비의 작업은 수많은 요인에 영향을 받으며, 이로 인해 각 장비의 작업시간 예측에 있어 불확실성이 존재한다 이러한 불확실성은 AGV 배차를 어렵게 만들고 작업효율을 떨어뜨리는 주요 원인 중 하나이다. 본 논문에서는 이러한 불확실성에 대처하기 위하여 확률적 시뮬레이션 기반 AGV 배차 알고리즘을 제안한다. 제안 방안은 AGV에 작업을 할당할 때, 할당된 작업의 수행 및 이후 일정 기간 동안의 AGV의 작업에 대해 확률적 시뮬레이션을 여러 번 반복 수행하여 작업할당에 대한 평가치의 확률적 표본을 수집한다. 수집한 표본으로부터 평가의 기대치를 추정하고 이를 이용하여 대안을 평가함으로써 불확실성의 영향을 줄인다. 평가의 신뢰도를 높이기 위해서는 많은 수의 표본을 수집해야 하므로 실시간 제약 하에서 수집 가능한 확률적 표본의 수를 늘리기 위해 이벤트 기반의 고속 시뮬레이션을 디자인하였다. 시뮬레이션 실험을 통해 검증한 결과 불확실성이 있는 환경에서 제안방안의 성능이 정적인 환경을 가정하는 방안보다 뛰어남을 확인하였다.

퍼터베이션 분석을 이용한 대기행렬 네트워크의 최적화 (Optimization of Queueing Network by Perturbation Analysis)

  • 권치명
    • 한국시뮬레이션학회논문지
    • /
    • 제9권2호
    • /
    • pp.89-102
    • /
    • 2000
  • In this paper, we consider an optimal allocation of constant service efforts in queueing network to maximize the system throughput. For this purpose, using the perturbation analysis, we apply a stochastic optimization algorithm to two types of queueing systems. Our simulation results indicate that the estimates obtained from a stochastic optimization algorithm for a two-tandem queuing network are very accurate, and those for closed loop manufacturing system are a little apart from the known optimal allocation. We find that as simulation time increases for obtaining a new gradient (performance measure with respect to decision variables) by perturbation algorithm, the estimates tend to be more stable. Thus, we consider that it would be more desirable to have more accurate sensitivity of performance measure by enlarging simulation time rather than more searching steps with less accurate sensitivity. We realize that more experiments on various types of systems are needed to identify such a relationship with regards to stopping rule, the size of moving step, and updating period for sensitivity.

  • PDF

ADAMS/Insight를 이용한 1톤 상용트럭의 동역학 해석 및 최적화 (Dynamic Analysis and Optimization of 1ton Commercial Truck Using ADAMS/Insight)

  • 전형호;탁태오
    • 산업기술연구
    • /
    • 제23권A호
    • /
    • pp.15-20
    • /
    • 2003
  • Stochastic simulation technique has advantages over deterministic simulation in various engineering analysis, since stochastic simulation can take into consideration of scattering of various design variables, which is inherent characteristics of physical world. In this work, Monte-Carlo simulation mothod in ADAMS/Insight for steady-state cornering and J-turn behavior of a truck with design variables like hard points and busing stiffnesses have performed to achieve better dynamic performance. The main purpose is to improve understeer gradient at steady-state cornering and minimize peak lateral acceleration and peak yaw rate at J-turn. Through correlation analysis, design variables that have high impacts on the cornering behavior were selected, and significant performance improvement has been achieved by appropriately changing the high impact design variables.

  • PDF

Optimization of Stochastic System Using Genetic Algorithm and Simulation

  • 유지용
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1999년도 추계학술대회 논문집
    • /
    • pp.75-80
    • /
    • 1999
  • This paper presents a new method to find a optimal solution for stochastic system. This method uses Genetic Algorithm(GA) and simulation. GA is used to search for new alternative and simulation is used to evaluate alternative. The stochastic system has one or more random variables as inputs. Random inputs lead to random outputs. Since the outputs are random, they can be considered only as estimates of the true characteristics of they system. These estimates could greatly differ from the corresponding real characteristics for the system. We need multiple replications to get reliable information on the system. And we have to analyze output data to get a optimal solution. It requires too much computation to be practical. We address the problem of reducing computation. The procedure on this paper use GA character, an iterative process, to reduce the number of replications. The same chromosomes could exit in post and present generation. Computation can be reduced by using the information of the same chromosomes which exist in post and present current generation.

  • PDF

스토케스틱 페트리 네트를 이용한 교통 흐름 분석 (Analysis of the traffic flow using stochastic Petri Nets)

  • 조훤;고인선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1504-1507
    • /
    • 1997
  • In this paper, we investigate a traffic flow modeled by stochastic Petri nets. The model consists of two parts : the traffic flow model and signal controller model. These models are used for analyzing the flow of the traffic intersection. The results of the evaluation are derived from a Petri Net-based simulation package, Greatspn. Through simulation we compare the performances of the pretimed signal controller with those of the trafic-adaptive signal controller.

  • PDF

확률영역에서 시스템 출력만을 이용한 시스템 규명 (System Identification Using Stochastic Output Only)

  • 박성만;이동희;이종복;권오신;김진성;허훈
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.918-922
    • /
    • 2007
  • Most of the study on system identification has been carried out using input/output relation in physical domain. However identification concept of stochastic system has not been reported up to now. Interest is focused to identify an unknown dynamic system under random external disturbances which is not possible to measure. A concept to identify the system parameters in stochastic domain is proposed and implemented in terms of simulation. Attempt has been made to identify the system parameters in inverse manner in stochastic domain based on system output only. Simulation is conducted to reveal quite noticeable performance of the proposed concept.

Suitability of stochastic models for mortality projection in Korea: a follow-up discussion

  • Le, Thu Thi Ngoc;Kwon, Hyuk-Sung
    • Communications for Statistical Applications and Methods
    • /
    • 제28권2호
    • /
    • pp.171-188
    • /
    • 2021
  • Due to an increased demand for longevity risk analysis, various stochastic models have been suggested to evaluate uncertainly in estimated life expectancy and the associated value of future annuity payments. Recently updated data allow us to analyze mortality for a longer historical period and extended age ranges. This study followed up previous case studies using up-to-date empirical data on Korean mortality and the recently developed R package StMoMo for stochastic mortality models analysis. The suitability of stochastic mortality models, focusing on retirement ages, was investigated with goodness-of-fit, validity of models, and ability of generating reasonable sets of simulation paths of future mortality. Comparisons were made across various types of models. Based on the selected models, the variability of important estimated measures associated with pension, annuity, and reverse mortgage were quantified using simulations.

Perturbation Based Stochastic Finite Element Analysis of the Structural Systems with Composite Sections under Earthquake Forces

  • Cavdar, Ozlem;Bayraktar, Alemdar;Cavdar, Ahmet;Adanur, Suleyman
    • Steel and Composite Structures
    • /
    • 제8권2호
    • /
    • pp.129-144
    • /
    • 2008
  • This paper demonstrates an application of the perturbation based stochastic finite element method (SFEM) for predicting the performance of structural systems made of composite sections with random material properties. The composite member consists of materials in contact each of which can surround a finite number of inclusions. The perturbation based stochastic finite element analysis can provide probabilistic behavior of a structure, only the first two moments of random variables need to be known, and should therefore be suitable as an alternative to Monte Carlo simulation (MCS) for realizing structural analysis. A summary of stiffness matrix formulation of composite systems and perturbation based stochastic finite element dynamic analysis formulation of structural systems made of composite sections is given. Two numerical examples are presented to illustrate the method. During stochastic analysis, displacements and sectional forces of composite systems are obtained from perturbation and Monte Carlo methods by changing elastic modulus as random variable. The results imply that perturbation based SFEM method gives close results to MCS method and it can be used instead of MCS method, especially, if computational cost is taken into consideration.

확률적 비선형 동적계의 해석에 관한 연구 (A Study on the Analysis of Stochastic Nonlinear Dynamic System)

  • 남성현;김호룡
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.697-704
    • /
    • 1995
  • The dynamic characteristics of a system can be critically influenced by system uncertainty, so the dynamic system must be analyzed stochastically in consideration of system uncertainty. This study presents the stochastic model of a nonlinear dynamic system with uncertain parameters under nonstationary stochastic inputs. And this stochastic system is analyzed by a new stochastic process closure method and moment equation method. The first moment equation is numerically evaluated by Runge-Kutta method and the second moment equation is numerically evaluated by stochastic process closure method, 4th cumulant neglect closure method and Runge-Kutta method. But the first and the second moment equations are coupled each other, so this equations are approximately evaluated by a iterative method. Finally the accuracy of the present method is verified by Monte Carlo simulation.