• Title/Summary/Keyword: stochastic response analysis

Search Result 207, Processing Time 0.027 seconds

DYNAMIC ANALYSIS OF A MODIFIED STOCHASTIC PREDATOR-PREY SYSTEM WITH GENERAL RATIO-DEPENDENT FUNCTIONAL RESPONSE

  • Yang, Yu;Zhang, Tonghua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.103-117
    • /
    • 2016
  • Abstract. In this paper, we study a modified stochastic predator-prey system with general ratio-dependent functional response. We prove that the system has a unique positive solution for given positive initial value. Then we investigate the persistence and extinction of this stochastic system. At the end, we give some numerical simulations, which support our theoretical conclusions well.

The Analysis of the Seepage Quantity of Reservoir Embankment using Stochastic Response Surface Method (확률론적 응답면 기법을 이용한 저수지 제체의 침투수량 해석)

  • Bong, Tae-Ho;Son, Young-Hwan;Noh, Soo-Kack;Choi, Woo-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.75-84
    • /
    • 2013
  • The seepage quantity analysis of reservoir embankment is very important for assessment of embankment safety. However, the conventional analysis does not consider uncertainty of soil properties. Permeability is known that the coefficient of variation is larger than other soil properties and seepage quantity is highly dependent on the permeability of embankment. Therefore, probabilistic analysis should be carried out for seepage analysis. To designers, however, the probabilistic analysis is not an easy task. In this paper, the method that can be performed probabilistic analysis easily and efficiently through the numerical analysis based commercial program is proposed. Stochastic response surface method is used for approximate the limit state function and when estimating the coefficients, the moving least squares method is applied in order to reduce local error. The probabilistic analysis is performed by LHC-MCS through the response surface. This method was applied to two type (homogeneous, core zone) earth dams and permeability of embankment body and core are considered as random variables. As a result, seepage quantity was predicted effectively by response surface and probabilistic analysis could be successfully implemented.

Probabilistic sensitivity analysis of suspension bridges to near-fault ground motion

  • Cavdar, Ozlem
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.15-39
    • /
    • 2013
  • The sensitivities of a structural response due to variation of its design parameters are prerequisite in the majority of the algorithms used for fundamental problems in engineering as system uncertainties, identification and probabilistic assessments etc. The paper presents the concept of probabilistic sensitivity of suspension bridges with respect to near-fault ground motion. In near field earthquake ground motions, large amplitude spectral accelerations can occur at long periods where many suspension bridges have significant structural response modes. Two different types of suspension bridges, which are Bosporus and Humber bridges, are selected to investigate the near-fault ground motion effects on suspension bridges random response sensitivity analysis. The modulus of elasticity is selected as random design variable. Strong ground motion records of Kocaeli, Northridge and Erzincan earthquakes are selected for the analyses. The stochastic sensitivity displacements and internal forces are determined by using the stochastic sensitivity finite element method and Monte Carlo simulation method. The stochastic sensitivity displacements and responses obtained from the two different suspension bridges subjected to these near-fault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts stochastic sensitivity responses of suspension bridges. The stochastic sensitivity information provides a deeper insight into the structural design and it can be used as a basis for decision-making.

Fluctuating wind field analysis based on random Fourier spectrum for wind induced response of high-rise structures

  • Lin, Li;Ang, A.H.S.;Xia, Dan-dan;Hu, Hai-tao;Wang, Huai-feng;He, Fu-qiang
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.837-846
    • /
    • 2017
  • An accurate calculation of the stochastic wind field is the foundation for analyzing wind-induced structure response and reliability. In this research, the spatial correlation of structural wind field was considered based on the time domain method. A method for calculating the stochastic wind field based on cross stochastic Fourier spectrum was proposed. A flowchart of the proposed methodology is also presented in this study to represent the algorithm and workflow. Along with the analysis of regional wind speed distribution, the wind speed time history sample was calculated, and the efficiency can therefore be verified. Results show that the proposed method and programs could provide an efficient simulation for the wind-induced structure response analysis, and help determine the related parameters easily.

Effects of blast-induced random ground motions on the stochastic behaviour of industrial masonry chimneys

  • Haciefendioglu, Kemal;Soyluk, Kurtulus
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.835-845
    • /
    • 2012
  • This paper focuses on the stochastic response analysis of industrial masonry chimneys to surface blast-induced random ground motions by using a three dimensional finite element model. Underground blasts induce ground shocks on nearby structures. Depending on the distance between the explosion centre and the structure, masonry structures will be subjected to ground motions due to the surface explosions. Blast-induced random ground motions can be defined in terms of the power spectral density function and applied to each support point of the 3D finite element model of the industrial masonry system. In this paper, mainly a parametric study is conducted to estimate the effect of the blast-induced ground motions on the stochastic response of a chimney type masonry structure. With this purpose, different values of charge weight and distance from the charge centre are considered for the analyses of the chimney. The results of the study underline the remarkable effect of the surface blast-induced ground motions on the stochastic behaviour of industrial masonry type chimneys.

Probabilistic study of the influence of ground motion variables on response spectra

  • Yazdani, Azad;Takada, Tsuyoshi
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.877-893
    • /
    • 2011
  • Response spectra of earthquake ground motions are important in the earthquake-resistant design and reliability analysis of structures. The formulation of the response spectrum in the frequency domain efficiently computes and evaluates the stochastic response spectrum. The frequency information of the excitation can be described using different functional forms. The shapes of the calculated response spectra of the excitation show strong magnitude and site dependency, but weak distance dependency. In this paper, to compare the effect of the earthquake ground motion variables, the contribution of these sources of variability to the response spectrum's uncertainty is calculated by using a stochastic analysis. The analytical results show that earthquake source factors and soil condition variables are the main sources of uncertainty in the response spectra, while path variables, such as distance, anelastic attenuation and upper crust attenuation, have relatively little effect. The presented formulation of dynamic structural response in frequency domain based only on the frequency information of the excitation can provide an important basis for the structural analysis in some location that lacks strong motion records.

Investigation of effectiveness of double concave friction pendulum bearings

  • Ates, Sevket
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.195-213
    • /
    • 2012
  • This paper presents the investigation of the stochastic responses of seismically isolated bridges subjected to spatially varying earthquake ground motions including incoherence, wave-passage and site-response effects. The incoherence effect is examined by considering Harichandran and Vanmarcke coherency model. The effect of the wave-passage is dealt with various wave velocities in the response analysis. Homogeneous firm, medium and soft soil conditions are selected for considering the site-response effect where the bridge supports are constructed. The ground motion is described by filtered white noise and applied to each support points. For seismic isolation of the bridge, single and double concave friction pendulum bearings are used. Due to presence of friction on the concave surfaces of the isolation systems, the equation of motion of is non-linear. The non-linear equation of motion is solved by using equivalent linearization technique of non-linear stochastic analyses. Solutions obtained from the stochastic analyses of non-isolated and isolated bridges to spatially varying earthquake ground motions compared with each other for the special cases of the ground motion model. It is concluded that friction pendulum systems having single and double concave surfaces have important effects on the stochastic responses of bridges to spatially varying earthquake ground motions.

A stochastic finite element method for dynamic analysis of bridge structures under moving loads

  • Liu, Xiang;Jiang, Lizhong;Xiang, Ping;Lai, Zhipeng;Zhang, Yuntai;Liu, Lili
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • In structural engineering, the material properties of the structures such as elastic modulus, shear modulus, density, and size may not be deterministic and may vary at different locations. The dynamic response analysis of such structures may need to consider these properties as stochastic. This paper introduces a stochastic finite element method (SFEM) approach to analyze moving loads problems. Firstly, Karhunen-Loéve expansion (KLE) is applied for expressing the stochastic field of material properties. Then the mathematical expression of the random field is substituted into the finite element model to formulate the corresponding random matrix. Finally, the statistical moment of the dynamic response is calculated by the point estimation method (PEM). The accuracy and efficiency of the dynamic response obtained from the KLE-PEM are demonstrated by the example of a moving load passing through a simply supported Euler-Bernoulli beam, in which the material properties (including elastic modulus and density) are considered as random fields. The results from the KLE-PEM are compared with those from the Monte Carlo simulation. The results demonstrate that the proposed method of KLE-PEM has high accuracy and efficiency. By using the proposed SFEM, the random vertical deflection of a high-speed railway (HSR) bridge is analyzed by considering the random fields of material properties under the moving load of a train.

Direct implementation of stochastic linearization for SDOF systems with general hysteresis

  • Dobson, S.;Noori, M.;Hou, Z.;Dimentberg, M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.473-484
    • /
    • 1998
  • The first and second moments of response variables for SDOF systems with hysteretic nonlinearity are obtained by a direct linearization procedure. This adaptation in the implementation of well-known statistical linearization methods, provides concise, model-independent linearization coefficients that are well-suited for numerical solution. The method may be applied to systems which incorporate any hysteresis model governed by a differential constitutive equation, and may be used for zero or non-zero mean random vibration. The implementation eliminates the effort of analytically deriving specific linearization coefficients for new hysteresis models. In doing so, the procedure of stochastic analysis is made independent from the task of physical modeling of hysteretic systems. In this study, systems with three different hysteresis models are analyzed under various zero and non-zero mean Gaussian White noise inputs. Results are shown to be in agreement with previous linearization studies and Monte Carlo Simulation.

Stochastic optimal control analysis of a piezoelectric shell subjected to stochastic boundary perturbations

  • Ying, Z.G.;Feng, J.;Zhu, W.Q.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.231-251
    • /
    • 2012
  • The stochastic optimal control for a piezoelectric spherically symmetric shell subjected to stochastic boundary perturbations is constructed, analyzed and evaluated. The stochastic optimal control problem on the boundary stress output reduction of the piezoelectric shell subjected to stochastic boundary displacement perturbations is presented. The electric potential integral as a function of displacement is obtained to convert the differential equations for the piezoelectric shell with electrical and mechanical coupling into the equation only for displacement. The displacement transformation is constructed to convert the stochastic boundary conditions into homogeneous ones, and the transformed displacement is expanded in space to convert further the partial differential equation for displacement into ordinary differential equations by using the Galerkin method. Then the stochastic optimal control problem of the piezoelectric shell in partial differential equations is transformed into that of the multi-degree-of-freedom system. The optimal control law for electric potential is determined according to the stochastic dynamical programming principle. The frequency-response function matrix, power spectral density matrix and correlation function matrix of the controlled system response are derived based on the theory of random vibration. The expressions of mean-square stress, displacement and electric potential of the controlled piezoelectric shell are finally obtained to evaluate the control effectiveness. Numerical results are given to illustrate the high relative reduction in the root-mean-square boundary stress of the piezoelectric shell subjected to stochastic boundary displacement perturbations by the optimal electric potential control.