• Title/Summary/Keyword: stochastic response

Search Result 340, Processing Time 0.028 seconds

A New Control Method for an Adaptive Noise Canceller Using Stochastic difference between Voice and Noise Signals Power Change

  • Nishi, H.;Kakinoki, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2362-2367
    • /
    • 2005
  • This paper reports a technique for discriminating double talk and echo path change using the stochastic characteristics of power change for an adaptive noise canceller. The causes of rapid error increasing are double talk and echo path change. When the echo path is changed, the system corrects the impulse response in order to reduce the error. However, in the case of double talk, the system has to suspend the updating impulse response in order to maintain the quality of the voice signal. In the conventional system, it was difficult to discriminate between the two situations. In this research, the stochastic characteristics of the voice power change in the double talk period were experimentally verified to be different from the power change during echo path changing. Based on the results, a new double talk detection method is proposed.

  • PDF

The Reliability Analysis of the Cable Stayed Bridge Considered to Correlation of the Random Variable (확률변수의 상관성을 고려한 사장교의 신뢰성해석)

  • 한성호;권의성;정인수;신재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.210-217
    • /
    • 2004
  • Developed is the new program that the reliability analysis can be performed more effectively considering the correlation of structural members about the cable stayed bridge. This program is formulated the stochastic finite element method suitable for the reliability analysis and the new safety evaluation method is proposed which is different from the existing one by the deterministic method or MCS response analysis. After conducting the initial equilibrium analysis of cable stayed bridges, the stochastic finite element is formulated through the perturbation method and the reliability analysis considering the correlation of stochastic variables is conducted. The results in various types of cable stayed bridge show that the probability of failure considering the correlation is larger than the non-correlation. The fan system is more stable than other systems at the structural response and the probability failure.

  • PDF

Stochastic analysis of seismic structural response with soil-structure interaction

  • Sarkani, S.;Lutes, L.D.;Jin, S.;Chan, C.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.53-72
    • /
    • 1999
  • The most important features of linear soil-foundation-structure interaction are reviewed, using stochastic modeling and considering kinematic interaction, inertial interaction, and structural distortion as three separate stages of the dynamic response to the free-field motion. The way in which each of the three dynamic stages modifies the spectral density of the motion is studied, with the emphasis being on interpretation of these results, rather than on the development of new analysis techniques. Structural distortion and inertial interaction analysis are shown to be precisely modeled as linear filtering operations. Kinematic interaction, though, is more complicated, even though it has a filter-like effect on the frequency content of the motion.

Stochastic response analysis of visco-elastic slit shear walls

  • Kwan, A.K.H.;Tian, Q.L.;Cheung, Y.K.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.377-394
    • /
    • 1998
  • Slit shear walls an reinforced concrete shear wall structures with purposely built-in vertical slits. If the slits are inserted with visco-elastic damping materials, the shear walls will become viscoelastic sandwich beams. When adequately designed, this kind of structures can be quite effective in resisting earthquake loads. Herein, a simple analysis method is developed for the evaluation of the stochastic responses of visco-elastic slit shear walls. In the proposed method, the stiffness and mass matrices are derived by using Rayleigh-Ritz method, and the responses of the structures are calculated by means of complex modal analysis. Apart from slit shear walls, this analysis method is also applicable to coupled shear walls and cantilevered sandwich beams. Numerical examples are presented and the results clearly show that the seismic responses of shear wall structures can be substantially reduced by incorporating vertical slits into the walls and inserting visco-elastic damping materials into the slits.

Loads and motions for a spar-supported floating offshore wind turbine

  • Sultania, Abhinav;Manuel, Lance
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.525-541
    • /
    • 2016
  • An offshore wind turbine supported by a spar buoy floating platform is the subject of this study on tower and rotor extreme loads. The platform, with a 120-meter draft and assumed to be sited in 320 meters of water, supports a 5 MW wind turbine. A baseline model for this turbine developed at the National Renewable Energy Laboratory (NREL) is employed in stochastic response simulations. The support platform, along with the mooring system consisting of three catenary lines, chosen for loads modeling, is based on the "Hywind" floating wind turbine concept. Our interest lies in gaining an understanding of the dynamic coupling between the support platform motion and the turbine loads. We first investigate short-term response statistics using stochastic simulation for a range of different environmental wind and wave conditions. From this study, we identify a few "controlling" environmental conditions for which long-term turbine load statistics and probability distributions are established.

Probabilistic Behavior of In-plane Structure due to Multiple Correlated Uncertain Material Constants (상호 상관관계가 있는 다중 재료상수의 불확실성에 의한 평면구조의 확률론적 거동)

  • Noh Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.291-302
    • /
    • 2005
  • Due to the importance of the parameter in structural response, the uncertain elastic modulus was located at the center of stochastic analysis, where the response variability caused by the uncertain system parameters is pursued. However when we analyze the so-called stochastic systems, as many parameters as possible must be included in the analysis if we want to obtain the response variability that can reach a true one, even in an approximate sense. In this paper, a formulation to determine the statistical behavior of in-plane structures due to multiple uncertain material parameters, i.e., elastic modulus and Poisson's ratio, is suggested. To this end, the polynomial expansion on the coefficients of constitutive matrix is employed. In constructing the modified auto-and cross-correlation functions, use is made of the general equation for n-th moment. For the computational purpose, the infinite series of stochastic sub-stiffness matrices is truncated preserving required accuracy. To demons4rate the validity of the proposed formulation, an exemplary example is analyzed and the results are compared with those obtained by means of classical Monte Carlo simulation, which is based on the local averaging scheme.

Earthquake response spectra estimation of bilinear hysteretic systems using random-vibration theory method

  • Yazdani, Azad;Salimi, Mohammad-Rashid
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1055-1067
    • /
    • 2015
  • A theoretical procedure to estimate spectral displacement of a hysteretic oscillator with bilinear stiffness excited by band-limited excitation is presented. The stochastic method of ground-motion simulation is combined with the random vibration theory to compute linear and nonlinear structural response. The response is obtained by computing the root-mean-square oscillator response using dissipation energy balancing by integrating over all energy levels of system weighting with the stationary probability density of the energy. The results are presented in a convenient form, and the accuracy of the procedure is assessed by comparison with results obtained with the time-domain method using the recorded data. The model shows little or no bias at the structural period of engineering interest.

Simulation Optimization Methods with Application to Machining Process (시뮬레이션 최적화 기법과 절삭공정에의 응용)

  • 양병희
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.2
    • /
    • pp.57-67
    • /
    • 1994
  • For many practical and industrial optimization problems where some or all of the system components are stochastic, the objective functions cannot be represented analytically. Therefore, modeling by computer simulation is one of the most effective means of studying such complex systems. In this paper, with discussion of simulation optimization techniques, a case study in machining process for application of simulation optimization is presented. Most of optimization techniques can be classified as single-or multiple-response techniques. The optimization of single-response category, these strategies are gradient based search methods, stochastic approximate method, response surface method, and heuristic search methods. In the multiple-response category, there are basically five distinct strategies for treating the responses and finding the optimum solution. These strategies are graphical method, direct search method, constrained optimization, unconstrained optimization, and goal programming methods. The choice of the procedure to employ in simulation optimization depends on the analyst and the problem to be solved.

  • PDF

INTRODUCTION OF THREE FUNCTIONAL MODELS MATCHED TO THE STOCHASTIC RESPONSE EVALUATION OF ACOUSTIC ENVIRONMENTAL SYSTEM AND ITS APPLICATION TO A SOUND INSULATION SYSTEM

  • Ohta, Mitsuo;Fujita, Yoshifumi
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.686-691
    • /
    • 1994
  • For evaluating the response fluctuation of the actual environmental acoustic system excited by arbitrary random inputs, it is important to predict a whole probability distribution form closely connected with evaluation indexes Lx, Leq and so on. In this paper, a new type evaluation method is proposed by introducing three functional models matched to the prediction of the response probability distribution from a problem-oriented viewpoint. Because of the positive variable of the sound intensity, the response probability density function can be reasonably expressed theoretically by a statistical Laguerre expansion series form. The relationship between input and output is described by the regression relationship between the distribution parameters(containing expansion coefficients of this expression) and the stochastic input. These regression functions are expressed in terms of the orthogonal series expansion and their parameters are determined based on the least-squares error criterion and the measure of statistical independency.

  • PDF

Identification of 18 flutter derivatives by covariance driven stochastic subspace method

  • Mishra, Shambhu Sharan;Kumar, Krishen;Krishna, Prem
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.159-178
    • /
    • 2006
  • For the slender and flexible cable supported bridges, identification of all the flutter derivatives for the vertical, lateral and torsional motions is essential for its stability investigation. In all, eighteen flutter derivatives may have to be considered, the identification of which using a three degree-of-freedom elastic suspension system has been a challenging task. In this paper, a system identification technique, known as covariance-driven stochastic subspace identification (COV-SSI) technique, has been utilized to extract the flutter derivatives for a typical bridge deck. This method identifies the stochastic state-space model from the covariances of the output-only (stochastic) data. All the eighteen flutter derivatives have been simultaneously extracted from the output response data obtained from wind tunnel test on a 3-DOF elastically suspended bridge deck section-model. Simplicity in model suspension and measurements of only output responses are additional motivating factors for adopting COV-SSI technique. The identified discrete values of flutter derivatives have been approximated by rational functions.