• Title/Summary/Keyword: stochastic processing technique

Search Result 24, Processing Time 0.029 seconds

On Robust Principal Component using Analysis Neural Networks (신경망을 이용한 로버스트 주성분 분석에 관한 연구)

  • Kim, Sang-Min;Oh, Kwang-Sik;Park, Hee-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.113-118
    • /
    • 1996
  • Principal component analysis(PCA) is an essential technique for data compression and feature extraction, and has been widely used in statistical data analysis, communication theory, pattern recognition, and image processing. Oja(1992) found that a linear neuron with constrained Hebbian learning rule can extract the principal component by using stochastic gradient ascent method. In practice real data often contain some outliers. These outliers will significantly deteriorate the performances of the PCA algorithms. In order to make PCA robust, Xu & Yuille(1995) applied statistical physics to the problem of robust principal component analysis(RPCA). Devlin et.al(1981) obtained principal components by using techniques such as M-estimation. The propose of this paper is to investigate from the statistical point of view how Xu & Yuille's(1995) RPCA works under the same simulation condition as in Devlin et.al(1981).

  • PDF

Development of Design Blast Load Model according to Probabilistic Explosion Risk in Industrial Facilities (플랜트 시설물의 확률론적 폭발 위험도에 따른 설계폭발하중 모델 개발)

  • Seung-Hoon Lee;Bo-Young Choi;Han-Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • This paper employs stochastic processing techniques to analyze explosion risks in plant facilities based on explosion return periods. Release probability is calculated using data from the Health and Safety Executive (HSE), along with annual leakage frequency per plant provided by DNV. Ignition probability, derived from various researchers' findings, is then considered to calculate the explosion return period based on the release quantity. The explosion risk is assessed by examining the volume, radius, and blast load of the vapor cloud, taking into account the calculated explosion return period. The reference distance for the design blast load model is determined by comparing and analyzing the vapor cloud radius according to the return period, historical vapor cloud explosion cases, and blast-resistant design guidelines. Utilizing the multi-energy method, the blast load range corresponding to the explosion return period is presented. The proposed return period serves as a standard for the design blast load model, established through a comparative analysis of vapor cloud explosion cases and blast-resistant design guidelines. The outcomes of this study contribute to the development of a performance-based blast-resistant design framework for plant facilities.

Robust Multi-Layer Hierarchical Model for Digit Character Recognition

  • Yang, Jie;Sun, Yadong;Zhang, Liangjun;Zhang, Qingnian
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.699-707
    • /
    • 2015
  • Although digit character recognition has got a significant improvement in recent years, it is still challenging to achieve satisfied result if the data contains an amount of distracting factors. This paper proposes a novel digit character recognition approach using a multi-layer hierarchical model, Hybrid Restricted Boltzmann Machines (HRBMs), which allows the learning architecture to be robust to background distracting factors. The insight behind the proposed model is that useful high-level features appear more frequently than distracting factors during learning, thus the high-level features can be decompose into hybrid hierarchical structures by using only small label information. In order to extract robust and compact features, a stochastic 0-1 layer is employed, which enables the model's hidden nodes to independently capture the useful character features during training. Experiments on the variations of Mixed National Institute of Standards and Technology (MNIST) dataset show that improvements of the multi-layer hierarchical model can be achieved by the proposed method. Finally, the paper shows the proposed technique which is used in a real-world application, where it is able to identify digit characters under various complex background images.

EXTRACTION OF WATERMARKS BASED ON INDEPENDENT COMPONENT ANALYSIS

  • Thai, Hien-Duy;Zensho Nakao;Yen- Wei Chen
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.407-410
    • /
    • 2003
  • We propose a new logo watermark scheme for digital images which embed a watermark by modifying middle-frequency sub-bands of wavelet transform. Independent component analysis (ICA) is introduced to authenticate and copyright protect multimedia products by extracting the watermark. To exploit the Human visual system (HVS) and the robustness, a perceptual model is applied with a stochastic approach based on noise visibility function (NVF) for adaptive watermarking algorithm. Experimental results demonstrated that the watermark is perfectly extracted by ICA technique with excellent invisibility, robust against various image and digital processing operators, and almost all compression algorithms such as Jpeg, jpeg 2000, SPIHT, EZW, and principal components analysis (PCA) based compression.

  • PDF

Learning of Differential Neural Networks Based on Kalman-Bucy Filter Theory (칼만-버쉬 필터 이론 기반 미분 신경회로망 학습)

  • Cho, Hyun-Cheol;Kim, Gwan-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.777-782
    • /
    • 2011
  • Neural network technique is widely employed in the fields of signal processing, control systems, pattern recognition, etc. Learning of neural networks is an important procedure to accomplish dynamic system modeling. This paper presents a novel learning approach for differential neural network models based on the Kalman-Bucy filter theory. We construct an augmented state vector including original neural state and parameter vectors and derive a state estimation rule avoiding gradient function terms which involve to the conventional neural learning methods such as a back-propagation approach. We carry out numerical simulation to evaluate the proposed learning approach in nonlinear system modeling. By comparing to the well-known back-propagation approach and Kalman-Bucy filtering, its superiority is additionally proved under stochastic system environments.

Image segmentation using adaptive clustering algorithm and genetic algorithm (적응 군집화 기법과 유전 알고리즘을 이용한 영상 영역화)

  • 하성욱;강대성
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.8
    • /
    • pp.92-103
    • /
    • 1997
  • This paper proposes a new gray-level image segmentation method using GA(genetic algorithm) and an ACA(adaptive clustering algorithm). The solution in the general GA can be moving because of stochastic reinsertion, and suffer from the premature convergence problem owing to deficiency of individuals before finding the optimal solution. To cope with these problems and to reduce processing time, we propose the new GBR algorithm and the technique that resolves the premature convergence problem. GBR selects the individual in the child pool that has the fitness value superior to that of the individual in the parents pool. We resolvethe premature convergence problem with producing the mutation in the parents population, and propose the new method that removes the small regions in the segmented results. The experimental results show that the proposed segmentation algorithm gives better perfodrmance than the ACA ones in Gaussian noise environments.

  • PDF

Prediction of EPB tunnelling performance for various grounds in Korea using discrete event simulation

  • Young Jin Shin;Jae Won Lee;Juhyi Yim;Han Byul Kang;Jae Hoon Jung;Jun Kyung Park
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.467-476
    • /
    • 2024
  • This study investigates Tunnel Boring Machine (TBM) performance prediction by employing discrete event simulation technique, which is a potential remedy highlighting its stochastic adaptability to the complex nature of TBM tunnelling activities. The new discrete event simulation model using AnyLogic software was developed and validated by comparing its results with actual performance data for Daegok-Sosa railway project that Earth Pressure Balance (EPB) TBM machine was used in Korea. The results showed the successful implementation of predicting TBM performance. However, it necessitates high-quality database establishment including geological formations, machine specifications, and operation settings. Additionally, this paper introduces a novel methodology for daily performance updates during construction, using automated data processing techniques. This approach enables daily updates and predictions for the ongoing projects, offering valuable insights for construction management. Overall, this study underlines the potential of discrete event simulation in predicting TBM performance, its applicability to other tunneling projects, and the importance of continual database expansion for future model enhancements.

Potential Anomaly Separation and Archeological Site Localization Using Genetically Trained Multi-level Cellular Neural Networks

  • Bilgili, Erdem;Goknar, I. Cem;Albora, Ali Muhittin;Ucan, Osman Nuri
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.294-303
    • /
    • 2005
  • In this paper, a supervised algorithm for the evaluation of geophysical sites using a multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. ML-CNN is a stochastic image processing technique based on template optimization using neighborhood relationships of the pixels. The separation/enhancement and border detection performance of the proposed method is evaluated by various interesting real applications. A genetic algorithm is used in the optimization of CNN templates. The first application is concerned with the separation of potential field data of the Dumluca chromite region, which is one of the rich reserves of Turkey; in this context, the classical approach to the gravity anomaly separation method is one of the main problems in geophysics. The other application is the border detection of archeological ruins of the Hittite Empire in Turkey. The Hittite civilization sites located at the Sivas-Altinyayla region of Turkey are among the most important archeological sites in history, one reason among others being that written documentation was first produced by this civilization.

  • PDF

Evaluation of soil spatial variability by micro-structure simulation

  • Fei, Suozhu;Tan, Xiaohui;Wang, Xue;Du, Linfeng;Sun, Zhihao
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.565-572
    • /
    • 2019
  • Spatial variability is an inherent characteristic of soil, and auto-correlation length (ACL) is a very important parameter in the reliability or probabilistic analyses of geotechnical engineering that consider the spatial variability of soils. Current methods for estimating the ACL need a large amount of laboratory or in-situ experiments, which is a great obstacle to the application of random field theory to geotechnical reliability analysis and design. To estimate the ACL reasonably and efficiently, we propose a micro-structure based numerical simulation method. The quartet structure generation set algorithm is used to generate stochastic numerical micro-structure of soils, and scanning electron microscope test of soil samples combined with digital image processing technique is adopted to obtain parameters needed in the QSGS algorithm. Then, 2-point correlation function is adopted to calculate the ACL based on the generated numerical micro-structure of soils. Results of a case study shows that the ACL can be estimated efficiently using the proposed method. Sensitivity analysis demonstrates that the ACL will become stable with the increase of mesh density and model size. A model size of $300{\times}300$ with a grid size of $1{\times}1$ is suitable for the calculation of the ACL of clayey soils.

Baleen Whale Sound Synthesis using a Modified Spectral Modeling (수정된 스펙트럴 모델링을 이용한 수염고래 소리 합성)

  • Jun, Hee-Sung;Dhar, Pranab K.;Kim, Cheol-Hong;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.69-78
    • /
    • 2010
  • Spectral modeling synthesis (SMS) has been used as a powerful tool for musical sound modeling. This technique considers a sound as a combination of a deterministic plus a stochastic component. The deterministic component is represented by the series of sinusoids that are described by amplitude, frequency, and phase functions and the stochastic component is represented by a series of magnitude spectrum envelopes that functions as a time varying filter excited by white noise. These representations make it possible for a synthesized sound to attain all the perceptual characteristics of the original sound. However, sometimes considerable phase variations occur in the deterministic component by using the conventional SMS for the complex sound such as whale sounds when the partial frequencies in successive frames differ. This is because it utilizes the calculated phase to synthesize deterministic component of the sound. As a result, it does not provide a good spectrum matching between original and synthesized spectrum in higher frequency region. To overcome this problem, we propose a modified SMS that provides good spectrum matching of original and synthesized sound by calculating complex residual spectrum in frequency domain and utilizing original phase information to synthesize the deterministic component of the sound. Analysis and simulation results for synthesizing whale sounds suggest that the proposed method is comparable to the conventional SMS in both time and frequency domain. However, the proposed method outperforms the SMS in better spectrum matching.