• Title/Summary/Keyword: stochastic finite element method

Search Result 135, Processing Time 0.032 seconds

Statistical Analysis of the Springback Scatter according to the Material Strength in the Sheet Metal Forming Process (판재성형공정에서의 소재 강도에 따른 스프링백 산포의 통계분석)

  • Son, Min-Kyu;Kim, Se-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.287-292
    • /
    • 2022
  • In this paper, the stochastic distribution of the springback amount is investigated for the stamping process of a U-channel shaped-product with ultra-high strength steel. Using the reliability-based design optimization technique (RBDO), stochastic distribution of process parameters is considered in the analysis including material properties and process variation. Quantification of the springback scatters is carried out with the statistical analysis method according to the material strength. It is found that the scattering amount of springback decreases while the amount of springback increases as the tensile strength of the blank material increases, which is investigated by analyzing the strain and stress distribution of the punch and die shoulder. It is noted that the proposed scheme is capable of predicting and responding to the unavoidable scattering of springback in the sheet metal forming process.

System identification of a cable-stayed bridge using vibration responses measured by a wireless sensor network

  • Kim, Jeong-Tae;Ho, Duc-Duy;Nguyen, Khac-Duy;Hong, Dong-Soo;Shin, Sung Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.533-553
    • /
    • 2013
  • In this paper, system identification of a cable-stayed bridge in Korea, the Hwamyung Bridge, is performed using vibration responses measured by a wireless sensor system. First, an acceleration based-wireless sensor system is employed for the structural health monitoring of the bridge, and wireless sensor nodes are deployed on a deck, a pylon and several selected cables. Second, modal parameters of the bridge are obtained both from measured vibration responses and finite element (FE) analysis. Frequency domain decomposition and stochastic subspace identification methods are used to obtain the modal parameters from the measured vibration responses. The FE model of the bridge is established using commercial FE software package. Third, structural properties of the bridge are updated using a modal sensitivity-based method. The updating work improves the accuracy of the FE model so that structural behaviors of the bridge can be represented better using the updated FE model. Finally, cable forces of the selected cables are also identified and compared with both design and lift-off test values.

A Study on the Supporting Location Optimization a Structure Under Non-Uniform Load Using Genetic Algorithm (유전알고리듬을 이용한 비균일 하중을 받는 구조물의 지지위치 최적화 연구)

  • Lee Young-Shin;Bak Joo-Shik;Kim Geun-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1558-1565
    • /
    • 2004
  • It is important to determine supporting locations for structural stability when a structure is loaded with non-uniform load or supporting locations as well as the number of the supporting structures are restricted by the problem of space. Moreover, the supporting location optimization of complex structure in real world is frequently faced with discontinuous design space. Therefore, the traditional optimization methods based on derivative are not suitable Whereas, Genetic Algorithm (CA) based on stochastic search technique is a very robust and general method. The KSTAR in-vessel control coil installed in vacuum vessel is loaded with non- uniform electro-magnetic load and supporting locations are restricted by the problem of space. This paper shows the supporting location optimization for structural stability of the in-vessel control coil. Optimization has been performed by means of a developed program. It consists of a Finite Element Analysis interfaced with a Genetic Algorithm. In addition, this paper presents an algorithm to find an optimum solution in discontinuous space using continuous design variables.

Analysis on running safety of train on bridge with wind barriers subjected to cross wind

  • Zhang, T.;Xia, H.;Guo, W.W.
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.203-225
    • /
    • 2013
  • An analysis framework for vehicle-bridge dynamic interaction system under turbulent wind is proposed based on the relevant theory of wind engineering and dynamics. Considering the fluctuating properties of wind field, the stochastic wind velocity time history is simulated by the Auto-Regressive method in terms of power spectral density function of wind field. The bridge is represented by three-dimensional finite element model and the vehicle by a multi-rigid-body system connected by springs and dashpots. The detailed calculation formulas of unsteady aerodynamic forces on bridge and vehicle are derived. In addition, the form selection of wind barriers, which are applied as the windbreak measures of newly-built railways in northwest China, is studied based on the suggested evaluation index, and the suitable values about height and porosity rate of wind barriers are studied. By taking a multi-span simply-supported box-girder bridge as a case study, the dynamic response of the bridge and the running safety indices of the train traveling on the bridge with and without wind barriers are calculated. The limit values of train speed with respect to different wind velocities are proposed according to the allowance values in the design code.

Decision of Optimal Magnetic Field Shielding Location around Power System Using Evolution Strategy Algorithm (Evolution Strategy 알고리즘을 이용한 송진선로 주변에서의 최적 자계차폐 위치선정)

  • Choe, Se-Yong;Na, Wan-Su;Kim, Dong-Hun;Kim, Dong-Su;Lee, Jun-Ho;Park, Il-Han;Sin, Myeong-Cheol;Kim, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.1
    • /
    • pp.5-14
    • /
    • 2002
  • In this paper, we analyze inductive interference in conductive material around 345 kV power transmission line, and evaluate the effects of mitigation wires. Finite element method (FEM) is used to numerically compute induced eddy currents as well as magnetic fields around powder transmission lines. In the analysis model, geometries and electrical properties of various elements such as power transmission line, buried pipe lines, overhead ground wire, and conducting earth are taken into accounts. The calculation shows that mitigation wire reduces fairly good amount of eddy currents in buried pipe line. To find the optimum magnetic field shielding location of mitigation wire, we applied evolution strategy algorithm, a kind of stochastic approach, to the analysis model. Finally, it was shown that we can find more effective shielding effects with optimum location of one mitigation wire than with arbitrary location of multi-mitigation wires around the buried pipe lines.

Transient Response Analysis of Linear Dynamic System with Random Properties (확률론적 특성을 갖는 선형 동적계의 과도 응답 해석)

  • 김인학;독고욱
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.125-131
    • /
    • 1997
  • Most dynamic systems have are known to various random properties in excitation and system parameters. In this paper, a procedure for response analysis is proposed for the linear dynamic system with random properties in both excitation and system parameters. The system parameters and responses with random properties are modeled by perturbation technique, and then response analysis is formulated by probabilistic and vibration theories. And probabilistic FEM is also used for the calculation of mean response which is difficult by the proposed response model. As an applicative example, the transient response is considered for systems of single degree of freedom with random mass and spring constant subjected to stationary white-noise excitation and the results are compared to those of numerical simulation.

  • PDF

Study of Supporting Location Optimization for a Structure under Non-uniform Load Using Genetic Algorithm (유전알고리즘을 이용한 비균일 하중을 받는 구조물의 지지 위치 최적화 연구)

  • Kim, G.H.;Lee, Y.S.;Kim, H.K.;Her, N.I.;Sa, J.W.;Yang, H.L.;Kim, B.C.;Bak, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1322-1327
    • /
    • 2003
  • It is important to determine supporting locations for structural stability of a structure under non-uniform load in space interfered by other parts. In this case, There are many local optima with discontinuous design space. Therefore, The traditional optimization methods based on derivative are not suitable. Whereas, Genetic algorithm(GA) based on stochastic search technique is a very robust and general method. This paper has been presented to determine supporting locations of the vertical supports for reducing stress of the KSTAR(Korea super Superconducting Tokamak Advanced Research) IVCC(In-vessel control coil) under non-uniform electromagnetic load and space interfered by other parts using genetic algorithm. For this study, we develop a program combining finite element analysis with a genetic algorithm to perform structural analysis of IVCC. In addition, this paper presents a technique to perform optimization with FEM when design variables are trapped in an incongruent design space.

  • PDF

Nonlinear self-induced vibration and operability envelope analysis of production strings in marine natural gas development

  • Liu, Kang;Chen, Guoming;Zhu, Gaogeng;Zhu, Jingyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.344-352
    • /
    • 2019
  • Marine production strings are continuously affected by unstable internal fluid during operation. In this paper, the structural governing equation for marine production string self-induced vibration is constructed. A finite element analysis model is established based on Euler-Bernoulli theory and solved by the Newmark method. Furthermore, based on reliability theory, a self-design procedure is developed to determine the operability envelope for marine production string self-induced vibration. Case studies show: the response frequency of the production strings is consistent with the excitation frequency under harmonic fluctuation and mainly determined by the first-order natural frequency under stochastic fluctuation. The operability envelope for marine production string self-induced vibration is a near symmetrical trapezium. With the increasing of natural gas output, the permissible fluctuation coefficient dramatically decreases. A reasonable centralizer spacing, increasing top tension, and controlling natural gas output are of great significance to the risk control in marine production string operation.

Seismic Safety Assessment of the Turbine-Generator Foundation using Probabilistic Structural Reliability Analysis (확률론적 구조신뢰성해석을 이용한 터빈발전기 기초의 지진 안전성 평가)

  • Joe, Yang-Hee;Kim, Jae-Suk;Han, Sung-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.33-44
    • /
    • 2008
  • Most of the civil structure - bridges, offshore structures, plant, etc. - have been designed by the classical approaches which deal with all the design parameters as deterministic variables. However, some more advanced techniques are required to evaluate the inherent randomness and uncertainty of each design variable. In this research, a seismic safety assessment algorithm based on the structural reliability analysis has been formulated and computerized for more reasonable seismic design of turbine-generator foundations. The formulation takes the design parameters of the system and loading properties as random variables. Using the proposed method, various kinds of parametric studies have been performed and probabilistic characteristics of the resulted structural responses have been evaluated. Afterwards, the probabilistic safety of the system has been quantitatively evaluated and finally presented as the reliability indexes and failure probabilities. The proposed procedure is expected to be used as a fundamental tool to improve the existing design techniques of turbine-generator foundations.

Fatigue Strength Analysis of Pontoon Type VLFS Using Spectral Method (통계해석법에 의한 폰툰식 VLFS의 피로강도해석)

  • Park, Seong-Whan;Han, Jeong-Woo;Han, Seung-Ho;Ha, Tae-Bum;Lee, Hong-Gu;Hong, Sa-Young;Kim, Byoung-Wan;Kyoung, Jo-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.351-361
    • /
    • 2006
  • The fatigue strength analysis of VLFS is carried out by using a 3-dimensional plate finite element model with a zooming technology which performs the modeling of wide portions of the structure by a coarse mesh but the concerned parts by a very fine mesh of t by t level. And a stepwise substructure modeling technique for global loading conditions is applied which uses the motion response of the global structure from 2-D plate hydroelastic analysis as the enforcing nodal displacements of the concern 3-D structural zooming model. Seven incident wave angles and whole ranges of frequency domains of wave spectrum are considered. In order to consider the effect of breakwater, the modified JONSWAP wave spectrum is used. Applying the wave data of installation region, the longterm spectrum analysis is done based on stochastic process and the fatigue life of the structure is estimated. Finally some design considerations from the view point of fatigue strength analysis of VLFS are discussed.