• Title/Summary/Keyword: stochastic earthquake

Search Result 114, Processing Time 0.022 seconds

Seismic Behaviors of a Bridge System in the Stochastic Perspectives (추계론적 이론을 이용한 교량내진거동분석)

  • Mha, Ho-Seong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.53-58
    • /
    • 2005
  • Semi-analytical methodology to examine the dynamic responses of a bridge is developed via the joint probability density function. The evolution of joint probability density function is evaluated by the semi-analytical procedure developed. The joint probability function of the bridge responses can be obtained by solving the path-integral solution of the Fokker-Planet equation corresponding to the stochastic differential equations of the system. The response characteristics are observed from the joint probability density function and the boundary of the envelope of the probability density function can provide the maxima ol the bridge responses.

Spectral Features of Seismic Wave Propagation from Odaesan Earthquake (M=4.8, '07. 1. 20) (오대산지진(M=4.8, '07. 1. 20)의 지진파 전달특성 평가)

  • Yun, Kwan-Hee;Park, Dong-Hee;Chang, Chung-Joong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.81-86
    • /
    • 2007
  • Spectral features of the seismic wave propagation from Odaesan Earthquake were evaluated based on the commonly treated random error between the observed data and the prediction values by the stochastic point-source ground-motion spectral model regarding the source, path and site effects. Radiation pattern of the error according to azimuth angle was found to be similar to the theoretical estimate. It was also observed that the spatial distribution of the errors was correlated with the geological map and the Q0 map which are indicatives of seismic boundaries.

  • PDF

Stochastic finite element analysis of structural systems with partially restrained connections subjected to seismic loads

  • Cavdar, Ozlem;Bayraktar, Alemdar;Cavdar, Ahmet;Kartal, Murat Emre
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.499-518
    • /
    • 2009
  • The present paper investigates the stochastic seismic responses of steel structure systems with Partially Restrained (PR) connections by using Perturbation based Stochastic Finite Element (PSFEM) method. A stiffness matrix formulation of steel systems with PR connections and PSFEM and MCS formulations of structural systems are given. Based on the formulations, a computer program in FORTRAN language has been developed, and stochastic seismic analyses of steel frame and bridge systems have been performed for different types of connections. The connection parameters, material and geometrical properties are assumed to be random variables in the analyses. The Kocaeli earthquake occurred in 1999 is considered as a ground motion. The connection parameters, material and geometrical properties are considered to be random variables. The efficiency and accuracy of the proposed SFEM algorithm are validated by comparison with results of Monte Carlo simulation (MCS) method.

Effects of Fault Parameters on the Ground Motion Synthesized by the Stochastic Green Function Method (추계학적 그린함수법으로 합성된 지반운동에 대한 단층 파라미터의 영향)

  • Kim, Jung-Han;Seo, Jeong-Moon;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • In this study, the ground motion was synthesized using the finite fault model by the stochastic green function method, and the difference in the ground motions was evaluated by using various values of the source parameters. An earthquake with a moment magnitude of 6.5 was assumed for the example fault model. The distribution of the slip in the fault plane was calculated using the statistical data of the asperity area. The source parameters considered in this study were the location of the hypocenter in the fault plane and the ratio of the rupture to the shear wave velocity, the rise time, the corner frequency of the source spectrum, and a high frequency filter. The values of the parameters related to the stochastic element source model were adjusted for different tectonic regions, and the others were selected for several possible cases. The response spectra were constructed from the synthesized ground motion time history and compared with the different parameter values. The frequency range affected by each parameter and the differences of the spectral accelerations were evaluated.

Optimum design of lead-rubber bearing system with uncertainty parameters

  • Fan, Jian;Long, Xiaohong;Zhang, Yanping
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.959-982
    • /
    • 2015
  • In this study, a non-stationary random earthquake Clough-Penzien model is used to describe earthquake ground motion. Using stochastic direct integration in combination with an equivalent linear method, a solution is established to describe the non-stationary response of lead-rubber bearing (LRB) system to a stochastic earthquake. Two parameters are used to develop an optimization method for bearing design: the post-yielding stiffness and the normalized yield strength of the isolation bearing. Using the minimization of the maximum energy response level of the upper structure subjected to an earthquake as an objective function, and with the constraints that the bearing failure probability is no more than 5% and the second shape factor of the bearing is less than 5, a calculation method for the two optimal design parameters is presented. In this optimization process, the radial basis function (RBF) response surface was applied, instead of the implicit objective function and constraints, and a sequential quadratic programming (SQP) algorithm was used to solve the optimization problems. By considering the uncertainties of the structural parameters and seismic ground motion input parameters for the optimization of the bearing design, convex set models (such as the interval model and ellipsoidal model) are used to describe the uncertainty parameters. Subsequently, the optimal bearing design parameters were expanded at their median values into first-order Taylor series expansions, and then, the Lagrange multipliers method was used to determine the upper and lower boundaries of the parameters. Moreover, using a calculation example, the impacts of site soil parameters, such as input peak ground acceleration, bearing diameter and rubber shore hardness on the optimization parameters, are investigated.

Stochastic Prediction of Strong Ground Motions in Southern Korea (추계학적 보사법을 이용한 한반도 남부에서의 강지진동 연구)

  • 조남대;박창업
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.17-26
    • /
    • 2001
  • In order to estimate peak ground motions and frequency characteristics of strong ground motions in southern korea, we employed the stochastic simulation method with the moment magnitude(M$_{w}$) and the hypocentral distance(R). We estimated same input parameters that account for specific properties of source and propagation processes, and applied them to the stochastic simulation method. The stress drop($\Delta$$\sigma$) of 100-bar was estimated considering results of research in ENA, China, and southern korea. The attenuation parameter x was calculated by analyzing 57 seismograms recorded from September 1996 to October 1997 and the estimation result of the attenuation parameter x is 0.00112+0.000224 R where R is hypocenter distance. We estimated strong ground motion relations using the stochastic simulation method with suitable input parameters(e.g. $\Delta$$\sigma$, x, and so on). At last, we derived relations between hypocentral distances and ground motions(seismic attenuation equation) using results of the stochastic prediction.esults of the stochastic prediction.n.

  • PDF

Random Vibration Analysis of Nonlinear Stochastic System under Earthquake Using Statistical Method (지진하중을 받는 비선헝 추계적 시스템의 불규칙진동해석)

  • Moon, Byung-Young;Kang, Gyung-Ju;Kang, Beom-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.55-64
    • /
    • 2001
  • Industrial machines are sometimes exposed to the danger of earthquake. In the design of a mechanical system, this factor should be accounted for from the viewpoint of reliability to analyze a complex nonlinear structure system under random excitation is proposed. First, the actual random excitation, such as earthquake, is approximated to the corresponding Gaussian process for the statistical analysis. The modal equations of overall system are expanded sequentially. Then, the perturbed equations are synthesized into the overall system and solved in probabilistic way. Several statistical properties of a random process that are of interest in random vibration are evaluated in each substructure. Comparing with the results of the numerical simulation proved the efficiency of the proposed method.

  • PDF

Optimal Design of Linear Quadratic Regulator Restrict Maximum Responses of Building Structures Subject to Stochastic Excitation (확률적 가진압력을 받는 건축구조물의 최대응답 제한을 위한 선형이차안정기의 최적설계)

  • 박지훈;황재승;민경원;조소훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.373-380
    • /
    • 2001
  • In this research, a controller design method based on optimization is proposed that can satisfy constraints on maximum responses of building structures subject to ground excitation modeled by partially stationary stochastic process. The class of controllers to be optimized is restricted to LQR. Weighting matrix on controlled outputs is used as design variable. Objective function constraint functions and their gradients are computed parameterizing control gain with Riccati matrix. Full state feedback controllers designed by Proposed optimization method satisfy various design objectives and their necessary maximum control forces are computed fur the production of actuator. Probabilities of maximum responses match statistical data from simulation results well.

  • PDF

Perturbation Based Stochastic Finite Element Analysis of the Structural Systems with Composite Sections under Earthquake Forces

  • Cavdar, Ozlem;Bayraktar, Alemdar;Cavdar, Ahmet;Adanur, Suleyman
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.129-144
    • /
    • 2008
  • This paper demonstrates an application of the perturbation based stochastic finite element method (SFEM) for predicting the performance of structural systems made of composite sections with random material properties. The composite member consists of materials in contact each of which can surround a finite number of inclusions. The perturbation based stochastic finite element analysis can provide probabilistic behavior of a structure, only the first two moments of random variables need to be known, and should therefore be suitable as an alternative to Monte Carlo simulation (MCS) for realizing structural analysis. A summary of stiffness matrix formulation of composite systems and perturbation based stochastic finite element dynamic analysis formulation of structural systems made of composite sections is given. Two numerical examples are presented to illustrate the method. During stochastic analysis, displacements and sectional forces of composite systems are obtained from perturbation and Monte Carlo methods by changing elastic modulus as random variable. The results imply that perturbation based SFEM method gives close results to MCS method and it can be used instead of MCS method, especially, if computational cost is taken into consideration.

Stochastic analysis of fluid-structure interaction systems by Lagrangian approach

  • Bayraktar, Alemdar;Hancer, Ebru
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.389-403
    • /
    • 2005
  • In the present paper it is aimed to perform the stochastic dynamic analysis of fluid and fluidstructure systems by using the Lagrangian approach. For that reason, variable-number-nodes twodimensional isoparametric fluid finite elements are programmed in Fortran language by the authors and incorporated into a general-purpose computer program for stochastic dynamic analysis of structure systems, STOCAL. Formulation of the fluid elements includes the effects of compressible wave propagation and surface sloshing motion. For numerical example a rigid fluid tank and a dam-reservoir interaction system are selected and modeled by finite element method. Results obtained from the modal analysis are compared with the results of the analytical and numerical solutions. The Pacoima Dam record S16E component recorded during the San Fernando Earthquake in 1971 is used as a ground motion. The mean of maximum values of displacements and hydrodynamic pressures are compared with the deterministic analysis results.