• Title/Summary/Keyword: stochastic approach

Search Result 583, Processing Time 0.031 seconds

HiCORE: Hi-C Analysis for Identification of Core Chromatin Looping Regions with Higher Resolution

  • Lee, Hongwoo;Seo, Pil Joon
    • Molecules and Cells
    • /
    • v.44 no.12
    • /
    • pp.883-892
    • /
    • 2021
  • Genome-wide chromosome conformation capture (3C)-based high-throughput sequencing (Hi-C) has enabled identification of genome-wide chromatin loops. Because the Hi-C map with restriction fragment resolution is intrinsically associated with sparsity and stochastic noise, Hi-C data are usually binned at particular intervals; however, the binning method has limited reliability, especially at high resolution. Here, we describe a new method called HiCORE, which provides simple pipelines and algorithms to overcome the limitations of single-layered binning and predict core chromatin regions with three-dimensional physical interactions. In this approach, multiple layers of binning with slightly shifted genome coverage are generated, and interacting bins at each layer are integrated to infer narrower regions of chromatin interactions. HiCORE predicts chromatin looping regions with higher resolution, both in human and Arabidopsis genomes, and contributes to the identification of the precise positions of potential genomic elements in an unbiased manner.

LQG modeling and GA control of structures subjected to earthquakes

  • Chen, ZY;Jiang, Rong;Wang, Ruei-Yuan;Chen, Timothy
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.421-430
    • /
    • 2022
  • This paper addresses the stochastic control problem of robots within the framework of parameter uncertainty and uncertain noise covariance. First of all, an open circle deterministic trajectory optimization issue is explained without knowing the unequivocal type of the dynamical framework. Then, a Linear Quadratic Gaussian (LQG) controller is intended for the ostensible trajectory-dependent linearized framework, to such an extent that robust hereditary NN robotic controller made out of the Kalman filter and the fuzzy controller is blended to ensure the asymptotic stability of the non-continuous controlled frameworks. Applicability and performance of the proposed algorithm shown through simulation results in the complex systems which are demonstrate the feasible to improve the performance by the proposed approach.

Viscoplasticity model stochastic parameter identification: Multi-scale approach and Bayesian inference

  • Nguyen, Cong-Uy;Hoang, Truong-Vinh;Hadzalic, Emina;Dobrilla, Simona;Matthies, Hermann G.;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.411-438
    • /
    • 2022
  • In this paper, we present the parameter identification for inelastic and multi-scale problems. First, the theoretical background of several fundamental methods used in the upscaling process is reviewed. Several key definitions including random field, Bayesian theorem, Polynomial chaos expansion (PCE), and Gauss-Markov-Kalman filter are briefly summarized. An illustrative example is given to assimilate fracture energy in a simple inelastic problem with linear hardening and softening phases. Second, the parameter identification using the Gauss-Markov-Kalman filter is employed for a multi-scale problem to identify bulk and shear moduli and other material properties in a macro-scale with the data from a micro-scale as quantities of interest (QoI). The problem can also be viewed as upscaling homogenization.

Prediction of EPB tunnelling performance for various grounds in Korea using discrete event simulation

  • Young Jin Shin;Jae Won Lee;Juhyi Yim;Han Byul Kang;Jae Hoon Jung;Jun Kyung Park
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.467-476
    • /
    • 2024
  • This study investigates Tunnel Boring Machine (TBM) performance prediction by employing discrete event simulation technique, which is a potential remedy highlighting its stochastic adaptability to the complex nature of TBM tunnelling activities. The new discrete event simulation model using AnyLogic software was developed and validated by comparing its results with actual performance data for Daegok-Sosa railway project that Earth Pressure Balance (EPB) TBM machine was used in Korea. The results showed the successful implementation of predicting TBM performance. However, it necessitates high-quality database establishment including geological formations, machine specifications, and operation settings. Additionally, this paper introduces a novel methodology for daily performance updates during construction, using automated data processing techniques. This approach enables daily updates and predictions for the ongoing projects, offering valuable insights for construction management. Overall, this study underlines the potential of discrete event simulation in predicting TBM performance, its applicability to other tunneling projects, and the importance of continual database expansion for future model enhancements.

Modeling of Virtual Switch in Cloud System (클라우드 시스템의 가상 스위치 모델링)

  • Ro, Cheul-Woo
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.479-485
    • /
    • 2013
  • Virtualization is a promising approach to consolidating multiple online services onto a smaller number of computing resources. A virtualized server environment allows computing resources to be shared among multiple performance isolated platforms called virtual machines. Through server virtualization software, applications servers are encapsulated into VMs, and deployed with APIs on top generalized pools of CPU and memory resources. Networking and security have been moved to a software abstraction layer that transformed computing, network virtualization. And it paves the way for enterprise to rapidly deploy networking and security for any application by creating the virtual network. Stochastic reward net (SRN) is an extension of stochastic Petri nets which provides compact modeling facilities for system analysis. In this paper, we develop SRN model of network virtualization based on virtual switch. Measures of interest such as switching delay and throughput are considered. These measures are expressed in terms of the expected values of reward rate functions for SRNs. Numerical results are obtained according to the virtual switch capacity and number of active VMs.

Failure modeling to predict warranty cost for individual markets (자동차 부품의 시장별 품질보증 비용 예측을 위한 고장모형 수립)

  • Lee, Ho-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1346-1352
    • /
    • 2009
  • Warranty cost of automobile parts varies depending on the parts failure rate in a warranty region of individual markets. Parts failure rate is significantly affected by usage-rate given that other stressors of individual markets are similar. Accordingly, warranty cost can be predicted by failure modeling which reflects usage-rate and using a stochastic process. In this paper, one-dimensional approach is used by applying accelerated failure time model on the assumption that the usage-rate is linear. Such model can explain changes in parts failure rate depending on the changes in usage-rate since it can be expressed as a function of usage-rate. Therefore, acquisition of usage-rate in a new market will automatically lead to estimate of failure rate even without warranty data and warranty cost of parts can be predicted through a renewal process in replacement cases. A case study using warranty data of two real markets is presented in the application part of this paper.

Economic Analysis of The Operational Policy for Data Backup with Information Security Threats (정보보호위협하에서 경제적인 데이터백업 운영 정책 분석)

  • Yang, Won Seok;Kim, Tae-Sung;Lee, Doo Ho
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.10
    • /
    • pp.270-278
    • /
    • 2014
  • The stability and security management of IT data becomes more important because information security threats increases rapidly in Big Data era. The operational policy of the data backup considering information security threats is required because the backup policy is the fundamental method that prevents the damage of security threats. We present an economic approach for a data backup system with information security threats which damage the system. The backup operation consists of the differential backup and the batch backup. We present a stochastic model considering the occurrence of information security threats and their damage. We analyze the stochastic model to derive the performance measures for the cost analysis. Finally we analyze the average cost of the system and give numerical examples.

Web-based Three-step Project Management Model and Its Software Development

  • Hwang Heung-Suk;Cho Gyu-Sung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.373-378
    • /
    • 2006
  • Recently the technical advances and complexities have generated much of the difficulties in managing the project resources, for both scheduling and costing to accomplish the project in the most efficient manner. The project manager is frequently required to render judgments concerning the schedule and resource adjustments. This research develops an analytical model for a schedule-cost and risk analysis based on visual PERT/CPM. We used a three-step approach: 1) in the first step, a deterministic PERT/CPM model for the critical path and estimating the project time schedule and related resource planning and we developed a heuristic model for crash and stretch out analysis based upon a time-cost trade-off associated with the crash and stretch out of the project. 2) In second step, we developed web-based risk evaluation model for project analysis. Major technologies used for this step are AHP (analytic hierarchy process, fuzzy-AHP, multi-attribute analysis, stochastic network simulation, and web based decision support system. Also we have developed computer programs and have shown the results of sample runs for an R&D project risk analysis. 3) We developed an optimization model for project resource allocation. We used AHP weighted values and optimization methods. Computer implementation for this model is provided based on GUI-Type objective-oriented programming for the users and provided displays of all the inputs and outputs in the form of GUI-Type. The results of this research will provide the project managers with efficient management tools.

  • PDF

Reliability based optimization of spring fatigue design problems accounting for scatter of fatigue test data (피로시험 데이터의 산포를 고려한 스프링의 신뢰성 최적설계)

  • An, Da-Wn;Won, Jun-Ho;Choi, Joo-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1314-1319
    • /
    • 2008
  • Fatigue reliability problems are nowadays actively considered in the design of mechanical components. Recently, Dimension Reduction Method using Kriging approximation (KDRM) was proposed by the authors to efficiently calculate statistical moments of the response function. This method, which is more tractable for its sensitivity-free nature and providing the response PDF in a few number of analyses, is adopted in this study for the reliability analysis. Before applying this method to the practical fatigue problems, accuracies are studied in terms of parameters of the KDRM through a number of numerical examples, from which best set of parameters are suggested. In the fatigue reliability problems, good number of experimental data are necessary to get the statistical distribution of the S-N parameters. The information, however, are not always available due to the limited expense and time. In this case, a family of curves with prediction interval, called P-S-N curve, is constructed from regression analysis. Using the KDRM, once a set of responses are available at the sample points at the mean, all the reliability analyses for each P-S-N curve can be efficiently studied without additional response evaluations. The method is applied to a spring design problem as an illustration of practical applications, in which reliability-based design optimization (RBDO) is conducted by employing stochastic response surface method which includes probabilistic constraints in itself. Resulting information is of great practical value and will be very helpful for making trade-off decision during the fatigue design.

  • PDF

Development of Multiscale Modeling Methods Coupling Molecular Dynamics and Stochastic Rotation Dynamics (분자동역학과 확률회전동역학을 결합한 멀티스케일 모델링 기법 개발)

  • Cha, Kwangho;Jung, Youngkyun
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.10
    • /
    • pp.534-542
    • /
    • 2014
  • Multiscale modeling is a new simulation approach which can manage different spatial and temporal scales of system. In this study, as part of multiscale modeling research, we propose the way of combining two different simulation methods, molecular dynamics(MD) and stochastic rotation dynamics(SRD). Our conceptual implementations are based on LAMMPS, one of the well-known molecular dynamics programs. Our prototype of multiscale modeling follows the form of the third party implementation of LAMMPS. It added MD to SRD in order to simulate the boundary area of the simulation box. Because it is important to guarantee the seamless simulation, we also designed the overlap zones and communication zones. The preliminary experimental results showed that our proposed scheme is properly worked out and the execution time is also reduced.