• 제목/요약/키워드: stirrups

검색결과 228건 처리시간 0.028초

Flexural behavior of beams reinforced with either steel bars, molded or pultruded GFRP grating

  • Hadi, Muhammad N.S.;Almalome, Mohammed H.A.;Yu, Tao;Rickards, William A.
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.17-34
    • /
    • 2020
  • This paper investigates the flexural behavior of concrete beams reinforced longitudinally with either steel bars, molded glass-fiber reinforced polymer (GFRP) grating mesh or pultruded glass-fiber reinforced polymer (GFRP) grating mesh, under four-point bending. The variables included in this study were the type of concrete (normal weight concrete, perlite concrete and vermiculite concrete), type of the longitudinal reinforcement (steel bars, molded and pultruded GFRP grating mesh) and the longitudinal reinforcement ratio (between 0.007 and 0.035). The influences of these variables on the load-midspan deflection curves, bending stiffness, energy absorption and failure modes were investigated. A total of fifteen beams with a cross-sectional dimension of 160 mm × 210 mm and an overall length of 2400 mm were cast and divided into three groups. The first group was constructed with normal weight concrete and served as a reference concrete. The second and third groups were constructed with perlite concrete and vermiculite concrete, respectively. An innovative type of stirrup was used as shear reinforcement for all beams. The results showed that the ultimate load of the beams reinforced with pultruded GFRP grating mesh ranged between 19% and 38% higher than the ultimate load of the beams reinforced with steel bars. The bending stiffness of all beams was influenced by the longitudinal reinforcement ratio rather than the type of concrete. Failure occurred within the pure bending region which means that the innovative stirrups showed a significant resistance to shear failure. Good agreement between the experimental and the analytical ultimate load was obtained.

전단철근이 없는 I형 휨보강 UHPCC 보의 거동해석 (Analysis of the Reinforced I section UHPCC (Ulrea High Performance Cementitous Composites) beam without stirrup)

  • 김성욱;한상묵;강수태;공정식;강준형;전상은
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.409-412
    • /
    • 2004
  • Over last decade extensive researches have been undertaken on the strength behaviour of Fiber Reinforced Concrete(FRC) structures. But the use of Ultra-High Strength Steel Fiber Cementitious Concrete Composites is in its infancy and there is a few experiments, analysis method and design criteria on the structural elements constructed with this new generation material which compressive strength is over 150 MPa and characteristic behaviour on the failure status is ductile. The objective of this paper is to investigate and analyze the behaviour of reinforced rectangular structural members constructed with ultra high performance cementitious composites (UHPCC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The variables of test specimens were shear span ratio, reinforcement ratio and fiber quantity. Even if there were no shear stirrups in test specimens, most influential variable to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone could be defined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.

축하중이 작용하는 RC 경계보-벽체 시스템의 해석적 평가 (Finite Element Analysis of the Reinforced Concrete Boundary-Beam-Wall System Subjected to Axial Load)

  • 손홍준;김승일;김대진
    • 한국전산구조공학회논문집
    • /
    • 제34권2호
    • /
    • pp.93-100
    • /
    • 2021
  • 현재 우리나라에서 설계 및 시공되는 대부분의 철근콘크리트 벽식구조 공동주택은 상부벽체-하부골조 시스템으로 구성되어 있으며 서로 다른 상하부 구조시스템의 결합을 위해 전이보를 이용한다. 상부의 하중을 하부의 기둥 부재에 효율적으로 전달하기 위해 전이보가 큰 강성을 지녀야 하고 이로 인해 부재의 춤이 커져 많은 물량의 투입되고 전반적인 경제성이 떨어지게 된다. 이러한 문제점을 해결하기 위해 기둥을 벽체요소로 대체하고 일반적인 콘크리트 전이보에 비해 규모가 작은 경계보를 수평 구조요소로 활용한 새로운 경계보-벽체 시스템을 제안한다. 제안된 시스템의 축하중에 대한 성능 평가를 위해 3차원 비선형 유한요소해석을 수행하였다. 주요 설계변수로 상하부벽체 길이비, 경계보 부재의 전단보강근 간격, 하부벽체로 연속되는 상부벽체 수직근의 꺾임 비율, 슬래브 길이를 설정하고 제안된 시스템의 성능에 얼마나 기여하는지 분석하였다.

철근콘크리트 부재의 전단강도 산정모델 (Shear Strength Estimation Model for Reinforced Concrete Members)

  • 이득행;한선진;김강수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권5호
    • /
    • pp.1-8
    • /
    • 2020
  • 이 연구에서는 철근콘크리트 부재의 전단파괴가 휨-전단 메커니즘에 지배된다는 가정을 바탕으로 인장측과 압축측에 대한 2개의 전단요구곡선들과 이에 대응되는 잠재전단강도곡선들을 각각 도출하였으며, 이를 기반으로 전단강도 산정모델을 제안하였다. 제안모델에서는 철근과 콘크리트의 부착거동을 고려하여 휨균열폭과 철근의 국부응력증가분을 산정하였다. 또한, 휨균열로부터 발전되는 지배전단균열의 생성과 균열진전거동을 이론적으로 모사하기 위하여 균열집중계수를 도입하였으며, 이를 통해 단면높이가 큰 철근콘크리트 부재에서 관측되는 크기효과를 반영하였다. 또한, 기존의 해석모델과는 다르게 전단철근과 콘크리트의 전단기여분 사이의 상호작용을 고려할 수 있는 새로운 형태의 수식을 개발하였다. 제안모델의 검증을 위하여 방대한 전단실험체들을 기존문헌으로부터 수집하였으며, 이를 통해 해석모델을 검증한 결과는 제안모델이 실험체들의 재료, 크기 및 철근의 부착특성에 관계없이 실험결과를 정확하게 평가할 수 있음을 보여주었다.

Axial behavior of steel reinforced lightweight aggregate concrete columns: Analytical studies

  • Mostafa, Mostafa M.A.;Wu, Tao;Fu, Bo
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.223-239
    • /
    • 2021
  • This paper presents the analytical modeling and finite element (FE) analysis, using ABAQUS software, of the new types of steel reinforced lightweight aggregate concrete (SRLAC) columns with cross-shaped (+shaped and X-shaped) steel section, using proposed three analytical and two FE models in total. The stress-strain material models for different components in the columns, including the confined zones of the lightweight aggregate concrete (LWAC) using three and four concrete zones divisions approaches and with and without taking into account the stirrups reaction effect, are established first. The analytical models for determining the axial load-deformation behavior of the SRLAC columns are drawn based on the materials models. The analytical and FE models' results are compared with previously reported test results of the axially loaded SRLAC columns. The proposed analytical and FE models accurately predict the axial behavior and capacities of the new types of SRLAC columns with acceptable agreements for the load-displacement curves. The LWAC strength, steel section ratio, and steel section configuration affect the contact stress between the concrete and steel sections. The average ratios of the ultimate test load to the three analytical models and FEA model loads, Put /Pa1, Put /Pa2, Put /Pa3, and Put /PFE1, for the tested specimens are 0.96, 1.004, 1.016, and 1.019, respectively. Finally, the analytical parametric studies are also studied, in terms of the effects of confinement, LWAC strength, steel section ratio, and the reinforcement ratio on the axial capacity of the SRLAC column. When concrete strength, confinements, area of steel sections, or reinforcement bars ratio increased, the axial capacities increased.

3D FE modeling and parametric analysis of steel fiber reinforced concrete haunched beams

  • Al Jawahery, Mohammed S.;Cevik, Abdulkadir;Gulsan, Mehmet Eren
    • Advances in concrete construction
    • /
    • 제13권1호
    • /
    • pp.45-69
    • /
    • 2022
  • This paper investigates the shear behavior of reinforced concrete haunched beams (RCHBs) without stirrups. The research objective is to study the effectiveness of the ideal steel fiber (SF) ratio, which is used to resist shear strength, besides the influence of main steel reinforcement, compressive strength, and inclination angles of the haunched beam. The modeling and analysis were carried out by Finite Element Method (FE) based on a software package, called Atena-GiD 3D. The program of this study comprises two-part. One of them consists of nine results of experimental SF RCHBs which are used to identify the accuracy of FE models. The other part comprises 81 FE models, which are divided into three groups. Each group differed from another group by the area of main steel reinforcement (As) which are 226, 339, and 509 mm2. The other parameters which are considered in each group in the same quantities to study the effectiveness of them, were steel fiber volumetric ratios (0.0, 0.5, and 1.0)%, compressive strength (20.0, 40.0, 60.0) MPa, and the inclination angle of haunched beam (0.0°, 10.0°, and 15.0°). Moreover, the parametric analysis was carried out on SF RCHBs to clarify the effectiveness of each parameter on the mechanical behavior of SF RCHBs. The results show that the correlation coefficient (R2) between shear load capacities of FE proposed models and shear load capacities of experimental SF RCHBs is 0.9793, while the effective inclination angle of the haunched beam is 10° which contributes to resisting shear strength, besides the ideal ratio of steel fibers is 1% when the compressive strength of SF RCHBs is more than 20 MPa.

Comparative experimental study on seismic retrofitting methods for full-scale interior reinforced concrete frame joints

  • Yang Chen;Xiaofang Song;Yingjun Gan;Chong Ren
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.385-397
    • /
    • 2023
  • This study presents an experiment and analysis to compare the seismic behavior of full-scale reinforced concrete beam-column joint strengthened by prestressed steel strips, externally bonded steel plate, and CFRP sheets. For experimental investigation, five specimens, including one joint without any retrofitting, one joint retrofitted by externally bonded steel plate, one joint retrofitted by CFRP sheets, and two joints retrofitted by prestressed steel strips, were tested under cyclic-reserve loading. The failure mode, strain response, shear deformation, hysteresis behavior, energy dissipation capacity, stiffness degradation and damage indexes of all specimens were analyzed according to experimental study. It was found that prestressed steel strips, steel plate and CFRP sheets improved shear resistance, energy dissipation capacity, stiffness degradation behavior and reduced the shear deformation of the joint core area, as well as changed the failure pattern of the specimen, which led to the failure mode changed from the combination of flexural failure of beams and shear failure of joints core to the flexural failure of beams. In addition, the beam-column joint retrofitted by steel plate exhibited a high bearing capacity, energy consumption capacity and low damage index compared with the joint strengthened by prestressed steel strip, and the prestressed steel strips reinforced joint showed a high strength, energy dissipation capacity and low shear deformation, stirrups strains and damage index compared to the CFRP reinforced joint, which indicated that the frame joints strengthened with steel plate exhibited the most excellent seismic behavior, followed by the prestressed steel strips.

라텍스개질콘크리트로 보수·보강된 RC 보의 휨 거동에 관한 실험적 연구 (Experimental Study on the Flexural Behavior Effect of RC Beam Repaired and Strengthened by Latex Modified Concrete)

  • 김성환;윤경구;김용곤
    • 대한토목학회논문집
    • /
    • 제29권5A호
    • /
    • pp.503-510
    • /
    • 2009
  • 본 연구의 목적은 LMC로 덧씌우기 또는 보수 된 형태의 RC 보의 정적 거동 특성을 파악하는데 있다. 따라서, LMC로 덧씌우기 및 보수된 RC 보를 상대습도 60%, 온도 $20^{\circ}C$의 조건에서 양생을 실시하여 제작하였으며, 제작된 시험체를 4점 휨 실험을 수행하여 균열양상, 파괴거동 및 극한강도 등의 거동을 고찰하였다. 실험결과 전단철근이 보강된 보수형태의 RC보의 경우 100%이상의 내하력을 회복하여 보수 효과가 뛰어난 것을 알 수 있었고, LMC로 압축부에 덧씌우기 된 시험체의 경우 덧씌우기 두께가 증가함에 따라 내하력이 크게 증진되었다. 그러나, 전단철근이 보강되지 않은 보수형태의 시험체와 인장부 덧씌우기된 시험체는 부착계면 파괴양상을 보여주어 보수 및 보강 효과가 거의 없는 것으로 나타났다. 또한 부착계면의 거동특성을 파악하기 위하여 전단흐름 개념을 도입하여 LMC로 압축 덧씌우기된 시험체를 대상으로 하중증가에 따른 전단흐름량을 계산하여 부착계면 특성을 수치적으로 나타내었다.

Web-shear strength of steel-concrete composite beams with prestressed wide flange and hollowed steel webs: Experimental and practical approach

  • Han, Sun-Jin;Kim, Jae Hyun;Choi, Seung-Ho;Heo, Inwook;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.311-321
    • /
    • 2022
  • In the buildings with long spans and high floors, such as logistics warehouses and semiconductor factories, it is difficult to install supporting posts under beams during construction. Therefore, the size of structural members becomes larger inevitably, resulting in a significant increase in construction costs. Accordingly, a prestressed hybrid wide flange (PHWF) beam with hollowed steel webs was developed, which can reduce construction costs by making multiple openings in the web of the steel member embedded in concrete. However, since multiple openings exist and prestress is introduced only into the bottom flange concrete, it is necessary to identify the shear resistance mechanism of the PHWF beam. This study presents experimental shear tests of PHWF beams with hollowed steel webs. Four PHWF beams with cast-in-place (CIP) concrete were fabricated, with key variables being the width and spacing of the steel webs embedded in the concrete and the presence of shear reinforcing bars, and web-shear tests were conducted. The shear behavior of the PHWF beam, including crack patterns, strain behavior of steel webs, and composite action between the prestressed bottom flange and CIP concrete, were measured and analyzed comprehensively. The test results showed that the steel web resists external shear forces through shear deformation when its width is sufficiently large, but as its width decreased, it exerted its shear contribution through normal deformation in a manner similar to that of shear reinforcing bars. In addition, it was found that stirrups placed on the cross section where the steel web does not exist contribute to improving the shear strength and deformation capacity of the member. Based on the shear behavior of the specimens, a straightforward calculation method was proposed to estimate the web-shear strength of PHWF beams with CIP concrete, and it provided a good estimation of the shear strength of PHWF beams, more accurate than the existing code equations.