• Title/Summary/Keyword: stirring speed

Search Result 151, Processing Time 0.044 seconds

Effect of Mixing Shear on Flocculation of Anionic PAM and Cationic Starch Adsorbed PCC and Its Effect on Paper Properties (교반 속도가 음이온성 PAM과 양이온성 전분으로 도포된 경질탄산칼슘의 응집과 종이 물성에 미치는 영향)

  • Choi, Do-Chim;Won, Jong Myoung;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.53-60
    • /
    • 2015
  • The effects of stirring speed during filler modification by dual polymers on flocculation and reflocculation of PCC (precipitated calcium carbonate) particles and its effect on handsheet properties were elucidated. PCC surface was modified by adsorbing A-PAM (anionic polyacrylamide) and C-starch (cationic starch) in series at various stirring speeds. It was found that increasing stirring speed during filler modification decreased the initial floc size of PCC. Continuous stirring with the same speed for filler modification resulted in the decrease of a floc size, eventually reached a steady state. The variations in a floc size was influenced by the stirring speed during filler modification: the lower the stirring speed during filler modification, the larger the floc size variations. Conclusively, the stability of PCC floc could be improved by increasing the stirring speed. In addition, the stirring speed influenced the handsheet properties. The smaller the PCC floc, the lower the strength of handseet. However, too much larger floc size also deteriorated paper strength. There exists an optimum floc size in term of paper strength which shall be controlled by stirring speed during filler modification.

A Study on the Solidification and Purification of High Purity Aluminium Alternate Stirring Method (정역 회전법에 의한 고순도 알루미늄의 응고 및 정련에 관한 연구)

  • Kim, Wook;Lee, Joung-Ki;Baik, Hong-Koo;Heo, Seong-Gang
    • Journal of Korea Foundry Society
    • /
    • v.12 no.3
    • /
    • pp.220-229
    • /
    • 1992
  • The degree of purification and the macrostructure of high purity aluminium were studied through the alternate stirring method in order to improve the nonuniformity of solute concentration in the unidirectional stirring method. The $2^3$ factorial design was done to examine the effects of experimental factors more qualitatively. In the relatively low stirring speed of 1500 rpm with alternate stirring mode, the uniform solute profile and refined grain structure were obtained due to strong washing effect and turbulent fluid flow. It was induced by the transition of the momentum boundary layer by alternation of the stirrer. It was concluded from this study that the alternate stirring mode was more effective to obtain the uniformity of solute even in the stirring speed of 1500 rpm. But the degree of purification decreased below the critical alternating period. When 2N(99.8wt.%) aluminium was used as the starting material the morphology of solid-liquid showed the cellular shape and the columnar grains were inclined to the direction of rotation. This inclined grain growth resulted from the difference of relative velocities of solid and liquid. The inclined angle was increased as the stirring speed increased and solidification proceeded. In the case of 4N aluminium, there was no inclined grain growth and it was confirmed from the macrostructure and SEM work that the morphology of solid-liquid interface was planar. From the factorial design, it was found that the alternate stirring mode showed poorer purification effect than that of unidirectional stirring mode at low speed(500 rpm). In addition, the factor that had the most significant effect on the degree of purification was the stirring speed.

  • PDF

A Study on the Solidification and Purification of High Purity Aluminium and Silicon by Stirring Method (냉각체 회전법에 의한 고순도 알루미늄 및 규소의 응고 및 정련에 관한 연구)

  • Kim, Wook;Lee, Jong-Ki;Baik, Hong-Koo;Yoon, Woo-Young
    • Journal of Korea Foundry Society
    • /
    • v.11 no.4
    • /
    • pp.303-313
    • /
    • 1991
  • The Purification mechanism of high purity aluminum was studied through the variation of stirring speed and coolant flow rate in the stirring method. In the stirring method the degree of purification was changed as the following factors;the variation of diffusion boundary layer thickness the variation of growth rate and the solute concentration of the residual melt. The concentration of Fe and Si was decreased as the stirring speed and the radial distance increased. In a high stirring speed of 2000rpm with unidirectional stirring mode, the uniformity of solutes was obtained. On the other hand, the purification of Si was done by the combinations of stirring method, fractional melting and acid leaching. In the case of Si purification, the centrifugal force developed in the melt acted as the significant purification factor. It was possible to obtain the purified 3N grade Si crystal after the complete elimination of residual aluminum by fractional melting and acid leaching.

  • PDF

A Study on the Optimization of Sedimentation Efficiency through Controlling Stirring Speed and Baffle Angle (교반속도 및 Baffle 각도 조절에 따른 침전지 효율 최적화 연구)

  • Kwak, Sung-Keun;Kim, Choong-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.69-75
    • /
    • 2020
  • This study was conducted to improve the solid-liquid separation efficiency of clarifiers. To do so, the study did a bio-flocculation experiment simply by controlling the stirring speed (rpm) and baffle angle of a clarifier on a lab scale, but without using a coagulant. For the purpose of the experiment, the feed wall of a clarifier was so improved that a baffle could be installed on the clarifier. Then, it was ensured to change its stirring speed (to 0.0rpm, 0.6rpm, and 1.2rpm), with the angle fixed at 10°. As a result, it was found that concentration efficiency increased by 2.0%, and effluent removal efficiency (SS concentration) by 7.8%, at a stirring speed of 0.6ppm. This indicates the bio-coagulation efficiency of sludge increased with changing stirring speeds. Then, the baffle angle of the sedimentation unit was changed to analyze how the changed baffle angle would affect the sedimentation of sludge. As a result, it was found that the compression of sludge interface was very effective at a baffle angle of 20°. It is hoped that these experimental findings will be useful in improving the sedimentation efficiency of circular clarifiers.

Study on the Preparation Process and Properties of Magnetorheological Fluid Treated by Compounding Surfactants

  • Wu, Xiangfan;Xiao, Xingming;Tian, Zuzhi;Chen, Fei
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.229-234
    • /
    • 2016
  • Aiming to prepare high performance magnetorheological fluid, firstly, oleic acid and sodium dodecyl benzene sulfonate are chosen as surfactants. And then, the mechanical stirring process including stirring time, stirring temperature and stirring speed are optimized by measuring sedimentation ratio and zero-field viscosity. Finally, the properties of prepared magnetorheological fluid are elaborated. The results indicate that the compounding of oleic acid and sodium dodecyl benzene sulfonate can improve the properties of magnetorheological fluid distinctively, and the optimistic compounding content is 4g:4g or 5g:5g. The surfactants adding orders and the second stirring time have little effect on the properties of magnetorheological fluid, while obviously of the first stirring time, temperature and speed. Moreover, the sedimentation ratio of prepared magnetorheological fluid is less than 5.2% in two weeks, the zero-field viscosity is smaller than $0.6Pa{\cdot}s$ at $20^{\circ}C$, and the maximum yield stress is higher than 50 kPa.

Ultrafiltration of palm oil mill effluent: Effects of operational pressure and stirring speed on performance and membranes fouling

  • Yunos, Khairul Faezah Md;Mazlan, Nurul Ain;Naim, Mohd Nazli Mohd;Baharuddin, Azhari Samsu;Hassan, Abdul Rahman
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.263-270
    • /
    • 2019
  • Palm oil mill effluent (POME) is the largest pollutant discharged into the rivers of Malaysia. Thus UF membrane study was conducted to investigate the effect of pressure and stirring speed on performance of POME treatment and fouling of membrane. Two types of membrane polyethersulfone (PES) and regenerated cellulose (RC) with molecular weight cut-off (MWCO) 5 and 10 kDa were used in this study. Results showed that, as pressure increased, fouling increased however permeate quality improved, the best pressure was 1.0 bar, where the fouling was not too high and produce good permeate quality. As stirring speed increased, fouling reduced and permeate quality improved, however, when stirring speed increased from 600 rpm to 800 rpm, there was no significant improvement on the permeate quality. Therefore, the best condition was at 1.0 bar and 600 rpm. PES membrane with MWCO 5 kDa showed the best permeate quality, even fouling slightly higher than RC membrane. The permeate quality obtained were analyzed in term of dissolved solid, turbidity, suspended solid, biological oxygen demand ($BOD_5$) and chemical oxygen demand (COD) were 538 mg/L, 1.02 NTU, < 25 mg/L, 27.7 mg/L and 62.8 mg/L, respectively with dominant type of fouling is cake resistance. Thus, it can be concluded water reuse standard was successfully achieved in terms of $BOD_5$ and suspended solid.

Effect of Reaction Condition and Solvent on The Size and Morphology of Silica Powder Prepared by An Emulsion Technique

  • Park, Won-Kyu;Kim, Dae-Yong
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.229-235
    • /
    • 2000
  • The spherical silica powder was synthesized by varying the kinds of solvent and mixing energy in emulsion method. The stirring speed varied from 500 to 1000 r.p.m. at 5$0^{\circ}C$ for 2h. Toluene in benzyl groups and a series of alkanes were used as dispersant. The average size of spherical silica particles decreased with increasing the stirring speed and the chain length o solvents used in this work. The average size was controlled in the range of 134~28$\mu\textrm{m}$ by selecting a proper solvent and stirring speed. The optimum processing parameters were described in details.

  • PDF

The Effect of Electromagnetic Stirring on the Microstructure of A356 Al Alloy by the Continuous Casting Process (A356 합금의 연속주조시 전자기 교반에 따른 미세조직 변화)

  • Kim, Won-Bae;Kwon, Tae-Woo;Kim, Jong-Chul;Park, Tae-Ho;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.4
    • /
    • pp.156-160
    • /
    • 2005
  • There are many factors that influence solidification behavior during continuous casting, e.g. include superheat, casting speed, cooling rate and holding time. However, when melt is stirred by electromagnetic force, there would be some changes in its solidification behavior compared to that of the ordinary casting process. In this study, the billets of A356 alloy with a diameter of 3 inch were fabricated with electromagnetic stirring under various conditions of superheat, casting speed and input voltage of electro magnetic stirring (EMS) device. The microstructure was also investigated under the various casting conditions and electromagnetic input voltages. When increase in input voltage, the microstructure was changed from dendritic to rosette type and finally to spheroidal. With pouring temperature, casting speed and electromagnetic input voltage were $650^{\circ}C$, 100 mm/min and 140 V, respectively, the billet with a diameter of 3 inch, which has a uniform dispersed spheroidal particles in the whole area of billet except for the surface area, was manufactured.

Effect of Temperature and Stirring speed on the Processing of Plum Concentrated Extract. (온도 및 교반속도가 매실엑기스 가공에 미치는 영향)

  • 이상대;조숙현
    • Food Science and Preservation
    • /
    • v.3 no.2
    • /
    • pp.121-129
    • /
    • 1996
  • Plum highlighted as a health food is needed to diversify the processed products because labor storage is big problem since the fruit was producted massively in June. The Plum was extracted by the pressing type extractor after washing, drying and removing the seed by seed separator. The crude extract was concentrated with stainless steel vessel at different temperature and stirring speed. This study was obtained as follows. The sugar content of fresh plum concentrated extract was 55.3~58.3$^{\circ}$Brix, and of the freezing plum concentrated extract was 75.5~70.3$^{\circ}$Brix. In color difference, the freezing plum concentrated extract was more deep black than fresh plum. In change patten of pH, it was decreased as concentration was proceed. The final pH was 2.3~2.2 in fresh plum, and 1.8~2.2 in freezing plum. The total acid content of fresh plum concentrated extract and the freezing plum was 45.4~47.8, 60.3~60.9%, respectively. The content of evaporation at 85$\pm$5$^{\circ}C$ was constant irrespective of stirring speed. The yield of extraction of fresh plum was higher than freezing plum. According to this results, the use of stainless vessel, 50rpm, which gave a highly qualified plum concentrated extract.

  • PDF