• Title/Summary/Keyword: stiffnesses

Search Result 230, Processing Time 0.022 seconds

Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads

  • Behravan Rad, A.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.139-161
    • /
    • 2012
  • In this paper, the static behavior of bi-directional functionally graded (FG) non-uniform thickness circular plate resting on quadratically gradient elastic foundations (Winkler-Pasternak type) subjected to axisymmetric transverse and in-plane shear loads is carried out by using state-space and differential quadrature methods. The governing state equations are derived based on 3D theory of elasticity, and assuming the material properties of the plate except the Poisson's ratio varies continuously throughout the thickness and radius directions in accordance with the exponential and power law distributions. The stresses and displacements distribution are obtained by solving state equations. The effects of foundation stiffnesses, material heterogeneity indices, geometric parameters and loads ratio on the deformation and stress distributions of the FG circular plate are investigated in numerical examples. The results are reported for the first time and the new results can be used as a benchmark solution for future researches.

Ellipsoidal bounds for static response of framed structures against interactive uncertainties

  • Kanno, Yoshihiro;Takewaki, Izuru
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.103-121
    • /
    • 2008
  • This paper presents an optimization-based method for computing a minimal bounding ellipsoid that contains the set of static responses of an uncertain braced frame. Based on a non-stochastic modeling of uncertainty, we assume that the parameters both of brace stiffnesses and external forces are uncertain but bounded. A brace member represents the sum of the stiffness of the actual brace and the contributions of some non-structural elements, and hence we assume that the axial stiffness of each brace is uncertain. By using the $\mathcal{S}$-lemma, we formulate a semidefinite programming (SDP) problem which provides an outer approximation of the minimal bounding ellipsoid. The minimum bounding ellipsoids are computed for a braced frame under several uncertain circumstances.

Foundation size effect on the efficiency of seismic base isolation using a layer of stone pebbles

  • Banovic, Ivan;Radnic, Jure;Grgic, Nikola
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.103-117
    • /
    • 2020
  • The effect of the foundation size on the efficiency of seismic base isolation using a layer of stone pebbles is experimentally investigated. Four scaled models of buildings with different stiffnesses (from very stiff to soft) were tested, each with the so-called small and large foundation, and exposed to four different accelerograms (different predominant periods and durations). Tests were conducted so that the strains in the model remained elastic and afterwards the models were tested until collapse. Each model was tested for the case of the foundation being supported on a rigid base and on an aseismic layer. Compared to the smaller foundation, the larger foundation results in a reduced rocking effect, higher earthquake forces and lower bearing capacity of the tested models, with respectable efficiency (reduced strain/stress, displacement and increase of the ultimate bearing capacity of the model) for the considered seismic base isolation compared to the foundation on a rigid base.

Lubrication Performance Analyses of Spiral Groove Dry Gas Seals - Part I: EE Analysis and Basic Performance Evaluation (스파이럴 그루브 드라이 가스 시일의 윤활 성능해석 - Part I: 유한요소 해석 및 기본 성능평가)

  • Lee An Sung;Yang Jae-Hun;Choi Dong-Hoon
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.58-67
    • /
    • 2004
  • In this study a general Galerkin FE lubrication analysis method for the compressible Reynolds equation in cylindrical coordinates is presented. Then, the method is applied for analyzing lubrication performances of spiral groove dry gas seals. The effects of toning and number of groove on performance indices are evaluated at low and high rotating speeds: 3,600 and 15,000 rpm. Results show that, for the primary design consideration performances such as the opening force and axial and angular stiffnesses, a negative or small coning and a large number of groove are preferred.

Static and Dynamic Tests on Laminated Rubber Bearings (적층(積層)고무받침의 정적(靜的) 및 동적(動的) 특성실험(特性實驗))

  • Kim, Nam Sik;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.85-93
    • /
    • 1993
  • Base isolation systems are economic and efficient for the control of structural vibration. In this study, the base isolators of LRB(laminated rubber bearing) type which have been generally used are fabricated and tested. From the static and dynamic tests, the characteristics of the base isolators, considering strain-hardening, hysteretic damping and horizontal stiffnesses, etc., are verified and particularly the feasibility as base isolation devices is discussed. Consequently, the test results are compared with the analytical ones that are derived from idealization as a bilinear model.

  • PDF

The Influence of the Aspect Ratio on the Composite Material Bridge Deck Structures

  • Han, Bong-Koo
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Theories for composite material structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. The author has reported that some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. For such plates, the fiber orientations given above behave as specially orthotropic plates and simple formulas developed by the author. Most of the bridge deck structures on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms $M_x$ on the relevant partial differential equations of equilibrium. In this paper, the result of the study on the subject problem is presented.

Flapwise Bending Vibration of Rotating Cantilever Beams (회전 외팔보의 면외방향 굽힘진동 해석)

  • 유홍희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.348-353
    • /
    • 1995
  • When cantilever beams rotate, their bending stiffnesses change due to the stretching caused by centrifugal inertia forces. Such phenomena result in variations of natural frequencies and mode shapes associated with constant speed rotational motions of the beams. These variations are important in many practical applications such as helicopter blades, turbomachines, and space structures. This paper presents the formulation of a set of linear equations governing the flapwise bending vibration of rotating cantilever beams. These equations can be used to provide accurate predictions of the variations of natural frequencies and mode shapes due to rotation.

Effects of shear deformation of sandwich panels on wave propagation and sound radiation characteristics (샌드위치 패널의 전단변형이 파동전달 및 방음 특성에 미치는 영향)

  • Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.110-113
    • /
    • 2005
  • Theoretical models to study the vibro-acoustic performance of a sandwich panel are proposed. The wave propagation characteristics are analyzed, and dispersion relation is derived. The vibration Is analyzed using the Mindlin plate theory. The vibration of the compliantly supported Mindlin plate is investigated using the Rayleigh-Ritz method. The Timoshenko beam functions are used as trial functions. The model is applied to numerically investigate the influence of the plate mechanical properties. The vibro-acoustic properties are mostly determined by bending deformation at low frequencies. At higher frequencies, the shear deformation has a strong influence. The proposed numerical model is used to estimate the optimal panel properties that result in minimum sound radiation. With increasing dynamic stiffnesses the vibration response decreases but the radiating wavenumber components increase.

  • PDF

Orthotropic sandwich plates with interlayer slip and under edgewise loads

  • Hussein, R.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.153-166
    • /
    • 2004
  • An elasticity solution for sandwich plates assembled with non-rigid bonding and subjected to edgewise loads is presented. The solution satisfies the equilibrium equations of the face and core elements, the compatibility equations of stresses and strains at the interfaces, and the boundary conditions. To investigate the effects of bonding stiffnesses on the responses of sandwich plates, numerical evaluations are conducted. The results obtained have shown that the bonding stiffness, up to a certain level, has a strong effect on the plate mechanical response. Beyond this level, the usual assumption of perfect bonding used in classical theories is quite acceptable. An answer to what constitutes perfect bonding is found in terms of the ratio of the core stiffness to the bonding stiffness.

Analytical solution of two-layer beam including interlayer slip and uplift

  • Kroflic, Ales;Planinc, Igor;Saje, Miran;Cas, Bojan
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.667-683
    • /
    • 2010
  • A mathematical model and its analytic solution for the analysis of stress-strain state of a linear elastic two-layer beam is presented. The model considers both slip and uplift at the interface. The solution is employed in assessing the effects of transverse and shear contact stiffnesses and the thickness of the interface layer on behaviour of nailed, two-layer timber beams. The analysis shows that the transverse contact stiffness and the thickness of the interface layer have only a minor influence on the stress-strain state in the beam and can safely be neglected in a serviceability limit state design.