• 제목/요약/키워드: stiffness-asymmetric plan

검색결과 11건 처리시간 0.019초

점성 감쇠기를 이용한 인접 비대칭 강성 구조물의 내진보강 최적설계 (Optimal Seismic Reinforcement Design of Adjacent Asymmetric-Stiffness Structures with Viscous Dampers)

  • 성은희
    • 한국안전학회지
    • /
    • 제37권6호
    • /
    • pp.60-70
    • /
    • 2022
  • This paper proposes an optimal design method of a seismic reinforcement system for the seismic performance of adjacent asymmetric-stiffness structures with viscous dampers. The first method considers plan asymmetry for efficient seismic reinforcement, and evaluates the seismic performance of optimal design applied to two cases of modeling: adjacent stiffness-asymmetric structures and adjacent stiffness-symmetric structures. The second method considers the response of asymmetric structures to derive the optimal objective function, and evaluates seismic efficiency of the objective function applied to two cases of responses: horizontal displacement and torsion. Numerical analyses are conducted on 7- and 10-story structures with a uni-asymmetric-stiffness plan using six cases of historic earthquakes, normalized to 0.4g. The results indicate that the seismic performance is excellent as modeled by adjacent asymmetric-stiffness structures and how much horizontal displacement is applied as the objective function.

횡하중에 의한 고층건물의 비틀림 거동분석 (Prediction of Torsional Behavior for High-Rise Building Structures under Lateral Load)

  • 서현주
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.151-160
    • /
    • 1999
  • It is recommended to have symmetric plan and elevation in structural design of hight-rise building structures to reduce torsional response of the structures. However it is not always allowed to do so due to architectural purposes. in many cases high-rise buildings are asymmetric. The purpose of this study is to predict the torsional behavior of high-rise building structures with asymmetric plan. Equivalent lateral stiffness and deformation shape factor are used for prediction of torsional response of high-rise buildings. Overall torsion of a structure is estimated by equivalent lateral stiffness and torsion of each floor is estimated by deformation factor in each 2-D lateral force resisting elements.

  • PDF

Extending torsional balance concept for one and two way asymmetric structures with viscous dampers

  • Amir Shahmohammadian;Mohammad Reza Mansoori;Mir Hamid Hosseini;Negar Lotfabadi Bidgoli
    • Earthquakes and Structures
    • /
    • 제25권6호
    • /
    • pp.417-427
    • /
    • 2023
  • If the center of mass and center of stiffness or strength of a structure plan do not coincide, the structure is considered asymmetric. During an earthquake, in addition to lateral vibration, the structure experiences torsional vibration as well. Lateraltorsional coupling in asymmetric structures in the plan will increase lateral displacement at the ends of the structure plan and, as a result, uneven deformation demand in seismically resistant frames. The demand for displacement in resistant frames depends on the magnitude of transitional displacement to rotational displacement in the plan and the correlation between these two. With regard to the inability to eliminate the asymmetrical condition due to various reasons, such as architectural issues, this study has attempted to use supplemental viscous dampers to decrease the correlation between lateral and torsional acceleration or displacement in the plan. This results in an almost even demand for lateral deformation and acceleration of seismic resistant frames. On this basis, using the concept of Torsional Balance, adequate distribution of viscous dampers for the decrease of this correlation was determined by transferring the "Empirical Center of Balance" (ECB) to the geometrical center of the structure plan and thus obtaining an equal mean square value of displacement and acceleration of the plan edges. This study analyzed stiff and flexible torsional structures with one-way and two-way mass asymmetry in the Opensees software. By implementing the Particle Swarm Optimization (PSO) algorithm, the optimum formation of dampers for controlling lateral displacement and acceleration is determined. The results indicate that with the appropriate distribution of viscous dampers, not only does the lateral displacement and acceleration of structure edges decrease but the lateral displacement or acceleration of the structure edges also become equal. It is also observed that the optimized center of viscous dampers for control of displacement and acceleration of structure depends on the amount of mass eccentricity, the ratio of uncoupled torsional-to-lateral frequency, and the amount of supplemental damping ratio. Accordingly, distributions of viscous dampers in the structure plan are presented to control the structure's torsion based on the parameters mentioned.

Influence of near-fault ground motions characteristics on elastic seismic response of asymmetric buildings

  • Tabatabaei, R.;Saffari, H.
    • Structural Engineering and Mechanics
    • /
    • 제40권4호
    • /
    • pp.489-500
    • /
    • 2011
  • The elastic seismic response of plan-asymmetric multi storey steel-frame buildings is investigated under earthquake loading with particular emphasis on forward-rupture directivity and fling records. Three asymmetric building systems are generated with different torsional stiffness and varying static eccentricity. The structural characteristic of these systems are designed according to UBC 97 code and their seismic responses subjected to a set of earthquake records are obtained from the response history analysis (RHA) as well as the linear static analysis (LSA). It is shown that, the elastic torsional response is influenced by the intensity of near-fault ground motions with different energy contents. In the extreme case of very strong earthquakes, the behaviour of torsionally stiff buildings and torsionally flexible buildings may differ substantially due to the fact that the displacement envelope of the deck depends on ground motion characteristics.

유전자 알고리즘을 이용한 비대칭 강성 구조물의 내진보강 최적설계 (Optimal design of seismic reinforcement for structures with asymmetric rigidity plans using genetic algorithm)

  • 이준호;김유성;성은희
    • 한국공간구조학회논문집
    • /
    • 제24권2호
    • /
    • pp.65-73
    • /
    • 2024
  • In this study, we propose an optimal design method by applying the Prefabricated Buckling Restrained Brace (PF-BRB) to structures with asymmetrically rigidity plan. As a result of the PF-BRB optimal design of a structure with an asymmetrically rigidity plan, it can be seen that the reduction effect of dynamic response is greater in the case of arrangement considering the asymmetric distribution of stiffness (Asym) than in the case of arrangement in the form of a symmetric distribution (Sym), especially It was confirmed that at an eccentricity rate of 20%, the total amount of reinforced PF-BRBs was also small. As a result of analyzing the dynamic response characteristics according to the change in eccentricity of the asymmetrically rigidity plan, the distribution of the reinforced PF-BRB showed that the larger the eccentricity, the greater the amount of damper distribution around the eccentric position. Additionally, when comparing the analysis models with an eccentricity rate of 20% and an eccentricity rate of 12%, the response reduction ratio of the 20% eccentricity rate was found to be large.

Experimental analysis of an asymmetric reinforced concrete bridge under vehicular loads

  • Thambiratnam, D.P.;Brameld, G.H.;Memory, T.J.
    • Structural Engineering and Mechanics
    • /
    • 제9권1호
    • /
    • pp.17-35
    • /
    • 2000
  • Dynamic response of a three span continuous bridge has been determined by full scale experiments on the bridge. In the experiments, a heavy vehicle was driven across the bridge at different speeds and along different lanes of travel and the strains were recorded at different locations. The bridge was made of reinforced concrete and was asymmetric in plan and in elevation. Frequencies and modes of vibration excited by the vehicle were determined. The dependence of the dynamic amplification on bridge location and vehicle speed was investigated and dynamic amplifications up to 1.5 were recorded, which was higher than values predicted by bridge design codes. It was evident that when this asymmetric bridge was loaded by an asymmetric forcing function, higher modes, which are lateral and/or torsional in nature, were excited. Dynamic modulus of elasticity and the support stiffness influenced the natural frequencies of the bridge, which in turn influenced the dynamic amplifications. Larger than anticipated dynamic amplification factors and the excitation of lateral and/or torsional modes should be of interest and concern to bridge engineers.

Optimal seismic retrofit design method for asymmetric soft first-story structures

  • Dereje, Assefa Jonathan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.677-689
    • /
    • 2022
  • Generally, the goal of seismic retrofit design of an existing structure using energy dissipation devices is to determine the optimum design parameters of a retrofit device to satisfy a specified limit state with minimum cost. However, the presence of multiple parameters to be optimized and the computational complexity of performing non-linear analysis make it difficult to find the optimal design parameters in the realistic 3D structure. In this study, genetic algorithm-based optimal seismic retrofit methods for determining the required number, yield strength, and location of steel slit dampers are proposed to retrofit an asymmetric soft first-story structure. These methods use a multi-objective and single-objective evolutionary algorithms, each of which varies in computational complexity and incorporates nonlinear time-history analysis to determine seismic performance. Pareto-optimal solutions of the multi-objective optimization are found using a non-dominated sorting genetic algorithm (NSGA-II). It is demonstrated that the developed multi-objective optimization methods can determine the optimum number, yield strength, and location of dampers that satisfy the given limit state of a three-dimensional asymmetric soft first-story structure. It is also shown that the single-objective distribution method based on minimizing plan-wise stiffness eccentricity turns out to produce similar number of dampers in optimum locations without time consuming nonlinear dynamic analysis.

Inelastic response of code-designed eccentric structures subject to bi-directional loading

  • Chandler, A.M.;Correnza, J.C.;Hutchinson, G.L.
    • Structural Engineering and Mechanics
    • /
    • 제5권1호
    • /
    • pp.51-58
    • /
    • 1997
  • The influence of bi-directional earthquake-induced loading on eccentric (plan-asymmetric) building systems has been investigated. In the first part of the study, comparisons have been made with equivalent results from uni-directional studies. The results are important in developing analytical models appropriate to the formulation of design recommendations. It is concluded that for valid comparisons, both perpendicular horizontal earthquake components must be considered when using models with transversely-orientated elements. In the second part of the study, an assessment has been made of a simplified, unidirectional (lateral) design approach. For stiffness-eccentric systems, the latter approach gives accurate and reasonably conservative estimates of the critical flexible-edge deformation, but may under estimate the stiff-edge element ductility demand by a factor of two in the short-period range.

Torsional parameters importance in the structural response of multiscale asymmetric-plan buildings

  • Bakas, Nikolaos;Makridakis, Spyros;Papadrakakis, Manolis
    • Coupled systems mechanics
    • /
    • 제6권1호
    • /
    • pp.55-74
    • /
    • 2017
  • The evaluation of torsional effects on multistory buildings remains an open issue, despite considerable research efforts and numerous publications. In this study, a large number of multiple test structures are considered with normally distributed topological attributes, in order to quantify the statistically derived relationships between the torsional criteria and response parameters. The linear regression analysis results, depict that the center of twist and the ratio of torsion (ROT) index proved numerically to be the most reliable criteria for the prediction of the modal rotation and displacements, however the residuals distribution and R-squared derived for the ductility demands prediction, was not constant and low respectively. Thus, the assessment of the torsional parameters' contribution to the nonlinear structural response was investigated using artificial neural networks. Utilizing the connection weights approach, the Center of Strength, Torsional Stiffness and the Base Shear Torque curves were found to exhibit the highest impact numerically, while all the other torsional indices' contribution was investigated and quantified.

Design aspects for minimizing the rotational behavior of setbacks buildings

  • Georgoussis, George K.
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1049-1066
    • /
    • 2016
  • An approximate analysis is presented for multi-story setback buildings subjected to ground motions. Setback buildings with mass and stiffness discontinuities are common in modern architecture and quite often they are asymmetric in plan. The proposed analysis provides basic dynamic data (frequencies and peak values of base resultant forces) and furthermore an overview of the building response during a ground excitation. The method is based on the concept of the equivalent single story system, which has been introduced by the author in earlier papers for assessing the response of uniform in height buildings. As basic quantities of the dynamic response of elastic setback buildings can be derived by analyzing simple systems, a structural layout of minimum elastic rotational response can be easily constructed. The behavior of such structural configurations, which is basically translational into the elastic phase, is also examined into the post elastic phase when the strength assignment of the various bents is based on a planar static analysis under a set of lateral forces simulating an equivalent 'seismic loading'. It is demonstrated that the almost concurrent yielding of all resisting elements preserves the translational response, attained at the end of the elastic phase, to the post elastic one.