• Title/Summary/Keyword: stiffness optimization

Search Result 519, Processing Time 0.035 seconds

Multi-criteria shape design of crane-hook taking account of estimated load condition

  • Muromaki, Takao;Hanahara, Kazuyuki;Tada, Yukio
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.707-725
    • /
    • 2014
  • In order to improve the crane-hook's performance and service life, we formulate a multi-criteria shape design problem considering practical conditions. The structural weight, the displacement at specified points and the induced matrix norm of stiffness matrix are adopted as the evaluation items to be minimized. The heights and widths of cross-section are chosen as the design variables. The design variables are expressed in terms of shape functions based on the Gaussian function. For this multi-objective optimization problem with three items, we utilize a multi-objective evolutionary algorithm, that is, the multi-objective Particle Swarm Optimization (MOPSO). As a common feature of obtained solutions, the side views are tapered shapes similar to those of actual crane-hook designs. The evaluation item values of the obtained designs demonstrate importance of the present optimization as well as the feasibility of the proposed optimal design approach.

Shape Design for Viscoelastic Vibration Isolators to Minimize Rotational Stiffness (회전강성 최소화를 위한 절연요소의 형상 설계)

  • Oh, Hwan-Youp;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1250-1255
    • /
    • 2008
  • Design of shape fur visco-elastic vibration isolation elements, which are very cost-effective and so popular in many applications is fi?equently based on experiences, intuitions, or trial and errors. Such traditions in shape design make it difficult for drastic changes or new concepts to come out. In this paper, both topological method and shape optimization method are combined together to find out a most desirable isolator shape efficiently by using two commercial engineering programs, ABAQUS and MATLAB. The procedure is divided into two steps. At the first step, a topology optimization method is employed to find an initial shape, where density of either 0 or 1 for finite elements is used fur physical realizability. At the second step, based on the initial shape, finer tuning of the shape is done by boundary movement method. An illustration of the procedure is presented fur a mount of an air-conditioner compressor system and the effectiveness is discussed.

Design and implementation of AMD system for response control in tall buildings

  • Teng, J.;Xing, H.B.;Xiao, Y.Q.;Liu, C.Y.;Li, H.;Ou, J.P.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.235-255
    • /
    • 2014
  • This paper mainly introduces recently developed technologies pertaining to the design and implementation of Active Mass Damper (AMD) control system on a high-rise building subjected to wind load. Discussions include introduction of real structure and the control system, the establishment of analytical model, the design and optimization of a variety of controllers, the design of time-varying variable gain feedback control strategy for limiting auxiliary mass stroke, and the design and optimization of AMD control devices. The results presented in this paper demonstrate that the proposed AMD control systems can resolve the issues pertaining to insufficient floor stiffness of the building. The control system operates well and has a good sensitivity.

Hysteresis modeling for cyclic behavior of concrete-steel composite joints using modified CSO

  • Yu, Yang;Samali, Bijan;Zhang, Chunwei;Askari, Mohsen
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.277-298
    • /
    • 2019
  • Concrete filled steel tubular (CFST) column joints with composite beams have been widely used as lateral loading resisting elements in civil infrastructure. To better utilize these innovative joints for the application of structural seismic design and analysis, it is of great importance to investigate the dynamic behavior of the joint under cyclic loading. With this aim in mind, a novel phenomenal model has been put forward in this paper, in which a Bouc-Wen hysteresis component is employed to portray the strength and stiffness deterioration phenomenon caused by increment of loading cycle. Then, a modified chicken swarm optimization algorithm was used to estimate the optimal model parameters via solving a global minimum optimization problem. Finally, the experimental data tested from five specimens subjected to cyclic loadings were used to validate the performance of the proposed model. The results effectively demonstrate that the proposed model is an easy and more realistic tool that can be used for the pre-design of CFST column joints with reduced beam section (RBS) composite beams.

Response surface methodology based multi-objective optimization of tuned mass damper for jacket supported offshore wind turbine

  • Rahman, Mohammad S.;Islam, Mohammad S.;Do, Jeongyun;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.303-315
    • /
    • 2017
  • This paper presents a review on getting a Weighted Multi-Objective Optimization (WMO) of Tuned Mass Damper (TMD) parameters based on Response Surface Methodology (RSM) coupled central composite design and Weighted Desirability Function (WDF) to attenuate the earthquake vibration of a jacket supported Offshore Wind Turbine (OWT). To optimize the parameters (stiffness and damping coefficient) of damper, the frequency ratio and damping ratio were considered as a design variable and the top displacement and frequency response were considered as objective functions. The optimization has been carried out under only El Centro earthquake results and after obtained the optimal parameters, more two earthquakes (California and Northridge) has been performed to investigate the performance of optimal damper. The obtained results also compared with the different conventional TMD's designed by Den Hartog's, Sadek et al.'s and Warburton's method. From the results, it was found that the optimal TMD based on RSM shows better response than the conventional damper. It is concluded that the proposed response model offers an efficient approach regarding the TMD optimization.

Compliant Mechanism Topology Optimization of Metal O-Ring (금속오링씰의 컴플라이언트 메커니즘 위상최적설계)

  • Kim, Geun-Hong;Lee, Young-Shin;Yang, Hyung-Lyeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.537-545
    • /
    • 2013
  • The elastic recovery of a metal seal is a factor that can be used to assess its sealing performance. In this study, a compliant mechanism topology optimization has been performed to find a structure of a metal O-ring seal that can maintain excellent sealing performance with a maximized elastic recovery over extended operation. An evolutionary structural optimization (ESO) was used as a topology optimization algorithm with two different types of objective functions considering both flexibility and stiffness. In particular, a circular design domain was adopted to consider the outer shape of the metal O-ring seal. The elastic recovery of the optimal topology was calculated and compared to that of a commercial product.

Material Arrangement Optimization for Automotive BIW considering a Large Number of Design Variables (과다 설계변수를 고려한 차량 BIW의 소재배치 최적화)

  • Park, Dohyun;Jin, Sungwan;Lee, Gabseong;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.15-23
    • /
    • 2013
  • Weight reduction of a automobile has been steadily tried in automotive industry to improve fuel efficiency, driving performance and the production profits. Since the weight of BIW takes up a large portion of the total weight of the automobile, reducing the weight of BIW greatly contributes to reducing the total weight of the vehicle. To reduce weight, vehicle manufacturers have tried to apply lightweight materials, such as aluminum and high-strength steel, to the components of BIW instead of conventional steel. In this research, material arrangement of an automotive BIW was optimized by formulating a design problem to minimize weight of the BIW while satisfying design requirements about bending and torsional stiffness and perform a metamodel-based design optimization strategy. As a result of the design optimization, weight of the BIW is reduced by 45.7% while satisfying all design requirements.

A Study on the Vibration Analysis and Optimization for the Composite Optical Structure of an Aircraft (복합재료를 적용한 항공기용 카메라 구조 경량화 설계 및 최적조건 선정에 관한 연구)

  • Kim, Byeong-Jun;Lee, Jun-Ho;Lee, Haeng-Bok;Jung, Dae-Yoon;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.230-235
    • /
    • 2012
  • This paper presents the vibration characteristics and the optimization using the orthogonal array about applied composite optical structure of an aircraft. To acquire the vibration characteristics for stable line of sight, modal analysis are performed by using multi-body program ADAMS. And to optimize optical structure, for design variables were selected, larger-the-better characteristics were considered using results of S/N ratio and orthogonal array $L_9(3^4)$. When bearing constraints are selected, radial, axial and moment stiffness value are used to analysis for optimization until now. But B.S.R which is non-dimensional parameter is proposed, structures including bearings can be used for optimization. And then having a result of lager-the-better, the optimized values of each design variable were successfully suggested.

Composite material optimization for heavy duty chassis by finite element analysis

  • Ufuk, Recep;Ereke, Murat
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.41-59
    • /
    • 2018
  • In the study, investigation of fiber- reinforced composite materials that can be an alternative to conventional steel was performed by finite element analysis with the help of software. Steel and composite materials have been studied on a four axle truck chassis model. Three-dimensional finite element model was created with software, and then analyzes were performed. The analyses were performed for static and dynamic/fatigue cases. Fatigue cases are formed with the help of design spectra model and fatigue analyses were performed as static analyses with this design spectra. First, analyses were performed for steel and after that optimization analyses were made for the AS4-PEEK carbon fiber composite and Eglass-Epoxy fiber composite materials. Optimization of composite material analyzes include determining the total laminate thickness, thickness of each ply, orientation of each ply and ply stacking sequence. Analyzes were made according to macro mechanical properties of composite, micromechanics case has not been considered. Improvements in weight reduction up to %50 provided at the end of the composite optimization analyzes with satisfying stiffness performance of chassis. Fatigue strength of the composite structure depends on various factors such as, fiber orientation, ply thickness, ply stack sequence, fiber ductility, ductility of the matrix, loading angle. Therefore, the accuracy of theoretical calculations and analyzes should be correlated by testing.

Vibration Ride Quality Optimization of a Suspension Seat System Using Genetic Algorithm (유전자 알고리즘을 이용한 SUSPENSION SEAT SYSTEM의 진동 승차감 최적화)

  • Park, S.K.;Choi, Y.H.;Choi, H.O.;Bae, B.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.584-589
    • /
    • 2001
  • This paper presents the dynamic parameter design optimization of a suspension seat system using the genetic algorithm. At first, an equivalent 1-D.O.F. mass-spring-damper model of a suspension seat system was constructed for the purpose of its vibration analysis. Vertical vibration response and transmissibility of the equivalent model due to base excitations, which are defined in the ISO's seat vibration test codes, were computed. Furthermore, seat vibration test, that is ISO's damping test, was carried out in order to investigate the validity of the equivalent suspension seat model. Both analytical and experimental results showed good agreement each other. For the design optimization, the acceleration transmissibility of the suspension seat model was adopted as an object function. A simple genetic algorithm was used to search the optimum values of the design variables, suspension stiffness and damping coefficient. Finally, vibration ride performance test results showed that the optimum suspension parameters gives the lowest vibration transmissibility. Accordingly the genetic algorithm and the equivalent suspension seat modelling can be successfully adopted in the vibration ride quality optimization of a suspension seat system.

  • PDF