• Title/Summary/Keyword: stiffness optimization

Search Result 517, Processing Time 0.036 seconds

Material Optimization of BIW for Minimizing Weight (경량화를 위한 BIW 소재 최적설계)

  • Jin, Sungwan;Park, Dohyun;Lee, Gabseong;Kim, Chang Won;Yang, Heui Won;Kim, Dae Seung;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.16-22
    • /
    • 2013
  • In this study, we propose the method of optimally changing material of BIW for minimizing weight while satisfying vehicle requirements on static stiffness. First, we formulate a material selection optimization problem. Next, we establish the CAE procedure of evaluating static stiffness. Then, to enhance the efficiency of design work, we integrate and automate the established CAE procedure using a commercial process integration and design optimization (PIDO) tool, PIAnO. For effective optimization, we adopt the approach of metamodel based approximate optimization. As a sampling method, an orthogonal array (OA) is used for selecting sampling points. The response values are evaluated at the sampling points and then these response values are used to generate a metamodel of each response using the linear polynomial regression (PR) model. Using the linear PR model, optimization is carried out an evolutionary algorithm (EA) that can handle discrete design variables. Material optimization result reveals that the weight is reduced by 44.8% while satisfying all the design constraints.

Lightweight Crane Design by Using Topology and Shape Optimization (위상최적설계와 형상최적설계를 이용한 크레인의 경량설계)

  • Kim, Young-Chul;Hong, Jung-Kie;Jang, Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.821-826
    • /
    • 2011
  • CAE-based structural optimization techniques are applied for the design of a lightweight crane. The boom of the crane is designed by shape optimization with the shape of the cross section of the boom as the design variable. The design objective is mass minimization, and the static strength and dynamic stiffness of the system are set as the design constraints. Hyperworks, a commercial analysis and optimization software, is used for shape and topology optimization. In order to consistently change the shape of the elements of the boom with respect to the change in the shape of its cross section, the morphing function in Hyperworks is used. The support of the boom of the original model is simplified to model the design domain for topology optimization, which is discretized by using three-dimensional solid elements. The final result after shape and topology optimization is 19% and 17% reduction in the masses of the boom and support, respectively, without a deterioration in the system stiffness.

Experiment characterization of the improvement of the rotational stiffness of the double-folded springs for MEMS structures (MEMS용 double-folded 스프링의 회전강성 개선 및 실험 평가)

  • Hwang I.H.;Kim C.I.;Wang S.M.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.888-891
    • /
    • 2005
  • Compared to the simple-beam springs, double-folded springs have advantages of the linearity even at the long stroke, so that they have been widely used for optical components such as optical switches and optical attenuators. Until now only the stiffness of the double-folded springs dn the perpendicular direction of the shuttle movement has been considered for the stable operation, however, the rotational stiffness of the splings has not been researched as much. Therefore, this paper suggests the double-folded springs of the maximum rotational stiffness with the constant stiffness in the stroke direction using the reliability based topology optimization (RBTO), whose operation properties were experimentally characterized.

  • PDF

Stiffness of hybrid systems with and without pre-stressing

  • Miljanovic, Sladana;Zlatar, Muhamed
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.147-161
    • /
    • 2020
  • Constructive merging of "basic" systems of different behavior creates hybrid systems. In doing so, the structural elements are grouped according to the behavior in carrying the load into a geometric order that provides sufficient load and structure functionality and optimization of the material consumption. Applicable in all materializations and logical geometric forms is a transparent system suitable for the optimization of load-bearing structures. Research by individual authors gave insight into suitable system constellations from the aspect of load capacity and the approximatemethod of estimating the participation of partialstiffnesswithin the rigidity ofthe hybrid system. The obtained terms will continue to be the basisfor our own research of the influence of variable parameters on the behavior of hybrid systemsformed of glued laminated girder and cable of different geometric shapes. Previous research has shown that by applying the strut-type hybrid systems can increase the load capacity and reduce the deformability ofthe free girder.The implemented parametric analysis pointsto the basic parameterin the behavior of these systems-the rigidity ofindividual elements and the overallstiffnessofthe system.The basic idea ofpre-stressing is that, in the load system or individual load-bearing element, prior to application of the exploitation load, artificially challenge the forcesthatshould optimize the finalsystembehaviorin the overall load. Pre-stressing is possible only if the supporting system orsystem's element possesssufficientstrength orstiffness, orreaction to the imposed forces of pre-stressing. In this paper will be presented own research of the relationship of partial stiffness of strut-type hybrid systemsofdifferentgeometric forms.Conducted parametric analysisofhybridsystemswithandwithoutpre-stressing, and on the example of the glulam-steel strut-type hybrid system under realistic conditions of change in the moisture content ofthe wooden girder,resulted in accurate expressions and diagramssuitable for application in practice.

Characterizing nonlinear oscillation behavior of an MRF variable rotational stiffness device

  • Yu, Yang;Li, Yancheng;Li, Jianchun;Gu, Xiaoyu
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • Magneto-rheological fluid (MRF) rotatory dampers are normally used for controlling the constant rotation of machines and engines. In this research, such a device is proposed to act as variable stiffness device to alleviate the rotational oscillation existing in the many engineering applications, such as motor. Under such thought, the main purpose of this work is to characterize the nonlinear torque-angular displacement/angular velocity responses of an MRF based variable stiffness device in oscillatory motion. A rotational hysteresis model, consisting of a rotatory spring, a rotatory viscous damping element and an error function-based hysteresis element, is proposed, which is capable of describing the unique dynamical characteristics of this smart device. To estimate the optimal model parameters, a modified whale optimization algorithm (MWOA) is employed on the captured experimental data of torque, angular displacement and angular velocity under various excitation conditions. In MWOA, a nonlinear algorithm parameter updating mechanism is adopted to replace the traditional linear one, enhancing the global search ability initially and the local search ability at the later stage of the algorithm evolution. Additionally, the immune operation is introduced in the whale individual selection, improving the identification accuracy of solution. Finally, the dynamic testing results are used to validate the performance of the proposed model and the effectiveness of the proposed optimization algorithm.

Design Optimization of Double-array Bolted Joints in Cylindrical Composite Structures

  • Kim, Myungjun;Kim, Yongha;Kim, Pyeunghwa;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.332-340
    • /
    • 2016
  • A design optimization is performed for the double-bolted joint in cylindrical composite structures by using a simplified analytical method. This method uses failure criteria for the major failure modes of the bolted composite joint. For the double-bolted joint with a zigzag arrangement, it is necessary to consider an interaction effect between the bolt arrays. This paper proposes another failure mode which is determined by angle and distance between two bolts in different arrays and define a failure criterion for the failure mode. The optimal design for the double-bolted joint is carried out by considering the interactive net-tension failure mode. The genetic algorithm (GA) is adopted to determine the optimized parameters; bolt spacing, edge distance, and stacking sequence of the composite laminate. A purpose of the design optimization is to maximize the burst pressure of the cylindrical structures by ensuring structural integrity. Also, a progressive failure analysis (PFA) is performed to verify the results of the optimal design for the double-bolted joint. In PFA, Hashin 3D failure criterion is used to determine the ply that would fail. A stiffness reduction model is then used to reduce the stiffness of the failed ply for the corresponding failure mode.

Engine Mounting System Optimization for Improve NVH (NVH 향상을 위한 엔진 설치 시스템 최적화)

  • Kim, Jang-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4665-4671
    • /
    • 2013
  • Engine mounting system is the most responsible system for NVH performance of vehicle. The vibration at idle shake, road shake, Key ON/OFF, gear shift tuned by the engine mount position and stiffness. Previously described Engine mounting system theory investigated and summarized in this paper. Decoupling of the Power train rigid mode and Reducing the angle between Torque-Roll-Axis and Elastic-roll-Axis is starting point of optimization. Multi-optimization analysis was performed because of variety simulation case and FE-model. Eventually, Find the best mount location and the stiffness has improved the performance of the vehicle NVH.

Damage identification of 2D and 3D trusses by using complete and incomplete noisy measurements

  • Rezaiee-Pajand, M.;Kazemiyan, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.149-172
    • /
    • 2014
  • Four algorithms for damage detection of trusses are presented in this paper. These approaches can detect damage by using both complete and incomplete measurements. The suggested methods are based on the minimization of the difference between the measured and analytical static responses of structures. A non-linear constrained optimization problem is established to estimate the severity and location of damage. To reach the responses, the successive quadratic method is used. Based on the objective function, the stiffness matrix of the truss should be estimated and inverted in the optimization procedure. The differences of the proposed techniques are rooted in the strategy utilized for inverting the stiffness matrix of the damaged structure. Additionally, for separating the probable damaged members, a new formulation is proposed. This scheme is employed prior to the outset of the optimization process. Furthermore, a new tactic is presented to select the appropriate load pattern. To investigate the robustness and efficiency of the authors' method, several numerical tests are performed. Moreover, Monte Carlo simulation is carried out to assess the effect of noisy measurements on the estimated parameters.

Optimum Design of Bracket for Satellite Antenna (위성안테나 브레켓의 최적설계)

  • Hwang, Tae-Kyung;Lim, O-Kaung;Lee, Jin-Sick;Lee, Jong-Ok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.451-455
    • /
    • 2003
  • Major concern in modern industry is how to reduce the time and cost for product efficient production. Among many mechanical parts of a satellite, bracket plays an important role to support the load when the satellite is launched to space. so enough strength and stiffness. A designer could add unnecessary material and strength it so as not to fail when it used. But if mechanical part of satellite is over-designed, cost will rise and it also goes against to the aim of lightness. To achieve lightness and enough strength and stiffness, optimization algorithm should be introduced in design process. In this study, conceptual design of bracket is carried out to increase the performance of satellite. Some parameter which could change the weight of this part are selected as design variables. Total weight of bracket is to be minimized while displacement and stress should not exceed limit. Size optimization is done with 3D solid element and PLBA, the RQP algorithm. The weight of 0.262kg of initial model is reduced to 0.241kg after optimization process, so 9.8% of weight reduction is obtained.

  • PDF

Conceptual configuration and seismic performance of high-rise steel braced frame

  • Qiao, Shengfang;Han, Xiaolei;Zhou, Kemin;Li, Weichen
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.173-186
    • /
    • 2017
  • Conceptual configuration and seismic performance of high-rise steel frame-brace structure are studied. First, the topology optimization problem of minimum volume based on truss-like material model under earthquake action is presented, which is solved by full-stress method. Further, conceptual configurations of 20-storey and 40-storey steel frame-brace structure are formed. Next, the 40-storeystructure model is developed in Opensees. Two common configurations are utilized for comparison. Last, seismic performance of 40-storey structure is derived using nonlinear static analysis and nonlinear dynamic analysis. Results indicate that structural lateral stiffness and maximum roof displacement can be improved using brace. Meanwhile seismic damage can also be decreased. Moreover, frame-brace structure using topology optimization is most favorable to enhance lateral stiffness and mitigate seismic damage. Thus, topology optimization is an available way to form initial conceptual configuration in high-rise steel frame-brace structure.