• Title/Summary/Keyword: stiffness of joint

Search Result 825, Processing Time 0.028 seconds

Strength Analysis of Composite Double-lap Bolted Joints by Progressive Failure Theory Based on Damage Variables (손상변수기반 점진적 파손이론을 이용한 복합재 이중 겹침 볼트 체결부의 강도 해석)

  • Kim, Sang-Kuk;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.91-98
    • /
    • 2013
  • A three-dimensional finite analysis method was proposed to predict the failure of composite double-lap bolted joints, which is based on the stiffness degradation method using damage variables and Hashin's three-dimensional failure criteria. Ladeveze's theory using damage variables to consider the matrix/shear damage was combined with stiffness degradation in fiber direction. Four different failure modes were considered including matrix compression/shear, matrix tension/shear, fiber compression, and tension failures. The friction between bolt and composite and the clamping force were considered using a commercial finite element software ABAQUS. The damage model was incorporated using the user-defined subroutine of the software. The predicted result was verified with the existing test result for bearing tension double shear and showed the deviation ranging 7~16% from test results.

Radiographic Evaluation of Stiffness of Articular Eminence in the Temporomandibular Joint(TMJ) of Korean Using Dental cone-beam CT (한국인의 측두하악관절에서 Dental cone-beam CT를 이용한 관절융기의 경사도에 대한 방사선학적 평가)

  • Oh, Sang-Chun;Han, Ji-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.2
    • /
    • pp.163-173
    • /
    • 2013
  • When the mandible performs opening movement, the condyle-disk complex conducts sliding movement along the articular eminence. Thus, anatomic configuration of articular eminence is very important to normal movement of TMJ. The purpose of this study was to measure the posterior slope of the articular eminence and evaluate the effect of a pathologic bone change in the condylar head on the stiffness of articular eminence, and compare the differences of the articular eminence slope by gender and age using dental cone-beam CT. As using i-CAT Cone-Beam Computed Tomography, the CT images of 204 TMJs of 102 patients(43 men and 59 women, mean age: 37.7 years) who were diagnosed at Wonkwang University Sanbon Dental Hospital were evaluated. All images were converted into a TMJ analysis mode to observe the continuous sagittal section images and coronal section images of the joints. To observe and assess bone changes in the condyle, three dentists measured the stiffness of the articular eminence on the same images, and when two of the three dentists agreed on their reading, these results were adopted and recorded. The articular eminence slope, considering the condylar anatomic configuration, was measured in three regions, namely, lateral part, central part, and medial part of the condyle. In the cases of a normal condyle(NCBC) and a condyle(CBC) with bone change, the articular eminence slopes were $57.0^{\circ}$(NCBC) and $51.8^{\circ}$(CBC) at the medial part, $57.9^{\circ}$(NCBC) and $52.4^{\circ}$(CBC) at the central part, and $55.1^{\circ}$(NCBC) and $49.5^{\circ}$(CBC) at the lateral part of the condyle. And the articular eminence slope of the condyle with bone change demonstrated less steepness than that of normal condyle (p<0.05). The articular eminence slope showed mediolaterally that it was the steepest at the central, followed by at the medial, and at the lateral (p<0.05). There were no significant differences by the gender and the age (p.0.05).

Role of suprascapular nerve block in idiopathic frozen shoulder treatment: a clinical trial survey

  • Mardani-Kivi, Mohsen;Nabi, Bahram Naderi;Mousavi, Mir-Hashem;Shirangi, Ardeshir;Leili, Ehsan Kazemnejad;Ghadim-Limudahi, Zahra Haghparast
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.2
    • /
    • pp.129-139
    • /
    • 2022
  • Background: Several therapeutic methods have been proposed for frozen shoulder syndrome. These include suprascapular nerve block, a simple and cost-effective technique that eliminates the need for nonsteroidal anti-inflammatory drug therapy. Methods: This was a clinical trial that included patients with unilateral shoulder joint stiffness. Patients were divided into three groups: those treated with isolated physiotherapy for 12 weeks (PT group), those treated with a single dose intra-articular injection of corticosteroid together with physiotherapy (IACI group), and those treated with a suprascapular nerve block performed with a single indirect injection of 8-mL lidocaine HCL 1% and 2 mL (80 mg) methylprednisolone acetate together with physiotherapy (SSNB group). The variables assessed were age, sex, side of involvement, dominant limb, presence of diabetes, physical examination findings including erythema, swelling, and muscle wasting; palpation and movement findings; shoulder pain and disability index (SPADI) score; and the visual analog scale (VAS) score pre-intervention and at 2-, 4-, 6-, and 12-week post-intervention. Results: Ninety-seven patients were included in this survey (34 cases in the PT group, 32 cases in the IACI group, and 31 cases in the SSNB group). Mean age was 48.55±11.06 years. Fifty-seven cases were female (58.8%) and 40 were male (41.2%). Sixty-eight patients had a history of diabetes (70.1%). VAS and SPADI scores and range of mototion degrees dramatically improved in all cases (p<0.001). Results were best in the SSNB group (p<0.001), and the IACI group showed better results than the PT group (p<0.001). Conclusions: Suprascapular nerve block is an effective therapy with long-term pain relief and increased mobility of the shoulder joint in patients with adhesive capsulitis.

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

Bacterial Osteomyelitis Induced by Morganella morganii in a Bearded Dragon (Pogona vitticeps)

  • Kwon, Jun;Kim, Sang Wha;Kim, Sang Guen;Kim, Hyoun Joong;Giri, Sib Sankar;Park, Se Chang
    • Journal of Veterinary Clinics
    • /
    • v.37 no.6
    • /
    • pp.342-344
    • /
    • 2020
  • Bacterial osteomyelitis-or bacterial infection of the bone-is common in reptiles. Unfortunately, its treatment is challenging despite advances in diagnostic and medical technologies. Herein, we present the case of a sexually mature female bearded dragon (Pogona vitticeps) with left forelimb elbow joint stiffness. We diagnosed the reptile with a eft elbow joint traumatic structural abnormality based on gross examination and evaluation of radiographs. Treatment with clindamycin and cephalexin for bacterial infection failed and the reptile died. Necropsy revealed the causative bacteria as Morganella morganii. Treatment of osteomyelitis is typically focused against Staphylococcus aureus as it the most common cause of traumatic bone infection. However, M. morganii, the causative bacterium in this case, has a natural resistance to clindamycin and cephalexin. Recently, these bacteria have begun to appear in clinical reports, more commonly as the causative organisms of bone infections. M. morganii should be considered as a potential cause of infection. Furthermore, antibiotic treatment in such cases should be based on bacterial culture and susceptibility tests.

Seismic-resistant slim-floor beam-to-column joints: experimental and numerical investigations

  • Don, Rafaela;Ciutina, Adrian;Vulcu, Cristian;Stratan, Aurel
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.307-321
    • /
    • 2020
  • The slim-floor solution provides an efficient alternative to the classic slab-over-beam configuration due to architectural and structural benefits. Two deficiencies can be identified in the current state-of-art: (i) the technique is limited to nonseismic applications and (ii) the lack of information on moment-resisting slim-floor beam-to-column joints. In the seismic design of framed structures, continuous beam-to-column joints are required for plastic hinges to form at the ends of the beams. The present paper proposes a slim-floor technical solution capable of expanding the current application of slim-floor joints to seismic-resistant composite construction. The proposed solution relies on a moment-resisting connection with a thick end-plate and large-diameter bolts, which are used to fulfill the required strength and stiffness characteristics of continuous connections, while maintaining a reduced height of the configuration. Considering the proposed novel solution and the variety of parameters that could affect the behavior of the joint, experimental and numerical validations are compulsory. Consequently, the current paper presents the experimental and numerical investigation of two slim-floor beam-to-column joint assemblies. The results are discussed in terms of moment-rotation curves, available rotational capacity and failure modes. The study focuses on developing reliable slim-floor beam joints that are applicable to steel building frame structures located in seismic regions.

Isolation of Differentially Expressed Genes in Chondrocytes Treated with Methylprednisolone by Subtractive Hybridization

  • Kim, Ji-Hee;Kang, Soon-Min;Suh, Jin-Soo;Kim, Chong-Rak
    • Biomedical Science Letters
    • /
    • v.8 no.3
    • /
    • pp.195-202
    • /
    • 2002
  • Osteoarthritis (OA), the most common form of arthritis, involves the destabilization of the normal balance between the degradation and the synthesis of articular cartilage and subchondral bone within a joint. As articular cartilage degrades over time, its smooth surface roughens and bone-against-bone contact ensues, producing the inflammation response symptomatic of this 'wear and tear' disease. Although a variety of genetic, developmental, metabolic, and traumatic factors may initiate the development of osteoarthritis, its symptoms (joint pain, stiffness, and curtailed function) typically evolve slowly, and patients experience periods of relative calm alternation with episodes of inflammation and pain. Rheumatoid arthritis (RA), an autoimmune disease of unknown etiology characterized by chronic synovitis and cartilage destruction, affect 1% of the total population. Cartilage is a specialized connective tissue in which the chondrocytes occupy only 5% of the volume. Cartilage is particularly rich in extracellular matrix, with matrix making up 90% of the dry weight of the tissue chondrocytes have cell processes that extend a short distance into the matrix, but do not touch other cells thus in cartilage, cell-matrix interactions are essential for the maintenance of the extracellular matrix. In this study, subtractive hybridization method was utilized to detect genes differentially expressed in chondrocytes treated with methylprednisolone. We have isolated 57 genes that expressed differentially in the chondreocytes by methylprednisolone. 13 clones of them were analyzed with sequencing and their homologies were searched. 8 cDNAS included KIAA 0368, upregulated during skeletal muscle growth 5 (usmg 5), ribosomal protein S 18 (RPS 18), skeletal muscle ryanodine receptor, radial spoke protein 3 (RSP 3), ribosomal protein QM, ribosomal protein L37a (RPL37A), cytochrome coxidase subunit VIII (COX8).

  • PDF

Application of a Distinct Element Method in the Analyses of Rock Avalanche and Tunnel Stability in Blocky Rock Masses (암반사태와 블록성 암반내 터널의 안정성 해석을 위한 개별요소법의 적용성)

  • 문현구
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.212-223
    • /
    • 1992
  • The distinct element method(DEM) si well suited to the kinematic analysis of blocky rock masses. Two distinctive problems, a rock avalache and tunnel in jointed rock masses, are chosen to apply the DEM which is based on perfectly rigid behaviour of blocks. Investigated for both problems are the effects of the input parameters such as contact stiffnesses, friction coefficient and damping property. Using various types of models of the avalanche and tunne, an extensive parametric study is done to gain experiences in the method, and then to alleviate difficulties in determining parameter values suitable for a given problem. The coefficient of frictio has significant effects on all aspects of avalanche motion(travel distance, velocity and travel time), while the stiffnesses affect the rebounding and jumping motions after collision. The motion predicted by the models having single and mutiple blocks agrees well to the observations reported on the actual avalache. For the tunnel problem, the behaviour of the key block in an example tunnel is compared by testing values of the input parameters. The stability of the tunnel is dependent primarily on the friction coefficient, while the stiffness and damping properties influence the block velocity. The kinematic stability of a tunnel for underground unclear waste repository is analyzed using the joint geometry data(orientation, spacing and persistence) occurred in a tailrace tunnel. Allowing a small deviation to the mean orientation results in different modes of failure of the rock blocks around the tunnel. Of all parameters tested, the most important to the stability of the tunnel in blocky rock masses are the geometry of the blocks generated by mapping the joint and tunnel surfaces in 3-dimensions and also the friction coefficient of the joints particularly for the stability of the side walls.

  • PDF

Treatment of the Stiffness of the Elbow using Posterior Extensile Approach (광범위 후방 접근법을 이용한 주관절 강직의 치료)

  • Yoo Chong-Il;Kim Hui-Taek;Son Kyo-Min;Ku Jeong-Mo;Jung Chul-Yong
    • Clinics in Shoulder and Elbow
    • /
    • v.8 no.1
    • /
    • pp.49-56
    • /
    • 2005
  • Purpose: To review the surgical results of stiff elbow using the posterior extensile approach which provides a wide surgical view with a single posterior skin incision. Materials and Methods: From February 1999 to May 2002, we performed 6 surgical correction of stiff elbow using posterior extensile approach and followed the patients more than 1 year. In order to get better result, we performed cadaver study (four elbows of two fresh cadavers). Average duration of follow up was 15.7 months $(14{\sim}21)$. Functional results was analyzed using Brobery and Morrey analysis scale. Results: The approach through the plane between the extensor carpi radialis longus and the extensor carpi radialis brevis was ideal, because it preserves normal anatomy and provides a wide surgical view of the anterior joint. The posterior joint could be approached directly between the medial head of the triceps brachii and brachialis medially, the lateral head of triceps brachii and brachioradialis laterally. In all patients, an improved ROM was obtained with intra and extra-articular adhesiolysis: an average $61.7^{\circ}$ improvement $(50{\sim}75)$. Functional results were as follows: five excellent, one good. In addition, the patients' satisfaction was high since the scar from the operation was only a single line at the posterior surface of the elbow. Conclusion: In the treatment of stiff elbow, posterior extensile approach is thought to be useful because this method provides wide anterior and posterior surgical view.

Structural performance of timber frame joints - Full scale tests and numerical validation

  • Aejaz, S.A.;Dar, A.R.;Bhat, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.457-470
    • /
    • 2020
  • The force resisting ability of a connection has direct implications on the overall response of a timber framed structure to various actions, thereby governing the integrity and safety of such constructions. The behavior of timber framed structures has been studied by many researchers by testing full-scale-connections in timber frames so as to establish consistent design provisions on the same. However, much emphasis in this approach has been unidirectional, that has focused on a particular connection configuration, with no research output stressing on the refinement of the existing connection details in order to optimize their performance. In this regard, addition of adhesive to dowelled timber connections is an economically effective technique that has a potential to improve their performance. Therefore, a comparative study to evaluate the performance of various full-scale timber frame Nailed connections (Bridled Tenon, Cross Halved, Dovetail Halved and Mortise Tenon) supplemented by adhesive with respect to Nailed-Only counterparts under tensile loading has been investigated in this paper. The load-deformation values measured have been used to calculate stiffness, load capacity and ductility in both the connection forms (with and without adhesion) which in turn have been compared to other configurations along with the observed failure modes. The observed load capacity of the tested models has also been compared to the design strengths predicted by National Design Specifications (NDS-2018) for timber construction. Additionally, the experimental behavior was validated by developing non-linear finite element models in ABAQUS. All the results showed incorporation of adhesive to be an efficient and an economical technique in significantly enhancing the performance of various timber nailed connections under tensile action. Thus, this research is novel in a sense that it not only explores the tensile behavior of different nailed joint configurations common in timber construction but also stresses on improvising the same in a logical manner hence making it distinctive in its approach.