• Title/Summary/Keyword: stiffness of joint

Search Result 822, Processing Time 0.026 seconds

Precise Drilling characteristics of glass fiber epoxy composite material (유리섬유 에폭시 복합재료의 정밀드릴가공 특성)

  • 김홍배
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.117-122
    • /
    • 1998
  • Glass fiber epoxy composite material is widely used in the structures of aircrafts, robots and other machines because of their high specific strength, high specific stiffness and high damping. In order for the composite materials to be used in the aircraft structures or machine elements, accurate surfaces for bearing mounting or joint must be provided, which require precise machining. In this paper, the machinability of the glass fiber epoxy composite material was experimentally investigated. The results can be summarized as follows : 1. The entrance of hole is very good manufacturing existing, but exit come to occur sever surface exfoliation. 2. The cutting force in drilling of the glass fiber epoxy composite material is decreased as the drilling speed increased. 3. If the glass fiber epoxy composite material is drilling by the standard twist drill, then the hole recommand cutting condition is spindle speed 400∼600rpm, feed 40∼50mm/min.

  • PDF

Occupant Analysis and Seat Design to Reduce the Neck Injury for Rear End Impact (후방추돌시 목상해를 고려한 승객거동해석 및 좌석설계)

  • 신문균;박기종;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.182-194
    • /
    • 1999
  • Occupant injury in rear end impact is rapidly becoming one of the most aggravating traffic safety problems with high human suffering and societal costs. Although rear end impact occurs at relatively low speed , it may cause permanent disability due to neck injuries resulting from an abrupt moment, shear force , and tension/compression force at the occipital condyles. The analysis is performed for a combined occupant-eat model response, using the SAFE(Safety Analysis for occupant crash Environment) computer program. The computational results are verified by those from sled tests. A parameter study is conducted for many physical and mechanical properties. Seat design has been performed based on the design of experiment process with respect to five parameters; seat-back upholstery stiffness, torsional stiffness of the seat-back. An orthogonal array is selected from the parameter study. A good design has been found from the analysis results based on the orthogonal array. The results show that reductions of stiffness in seat-back upholstery and joint are the most effective for preventing neck injuries.

  • PDF

Centrifuge modelling of temporary roadway systems subject to rolling type loading

  • Lees, Andrew S.;Richards, David J.
    • Geomechanics and Engineering
    • /
    • v.3 no.1
    • /
    • pp.45-59
    • /
    • 2011
  • Scaled centrifuge modelling techniques were used to study the soil-structure interactions and performance of a jointed rollable aluminium roadway (or trackway) system on soft clay under light truck tyre loads. The measured performance and subsequent analyses highlighted that the articulated connections significantly reduced the overall longitudinal flexural stiffness of the roadway leading to stress concentrations in the soil below the joints under tyred vehicle loadings. This resulted in rapid localised failure of the supporting soil that in turn led to excessive transverse flexure of the roadway and ultimately plastic deformations. It is shown that the performance of rollable roadway systems under tyred vehicle trafficking will be improved by eliminating joint rotation to increase longitudinal stiffness.

Strength Estimation of Composite Joints Based on Progressive Failure Analysis (점진적 파손해석 기법을 이용한 복합재 체결부의 강도해석)

  • 신소영;박노회;강경국;권진회;이상관;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.163-167
    • /
    • 2001
  • A two-dimensional progressive failure analysis method is presented for the strength characterization of the composite joints under pin loading. The eight-nodes laminated she]1 element is utilized based on the updated Lagrangian formulation. The criteria by Yamada-Sun, Tsai-Wu, and the maximum stress are used for the failure estimation. The stiffness of failed layer is degraded by the complete unloading method. No factor depending on test is included in the finite element analysis except for the material strength and stiffness. Total 20 plate specimens with and without hole are tested to validate the finite element prediction. The Tsai-Wu failure criterion most conservatively estimates the strength of laminate, and the maximum stress criterion yields the highest strength because it does not consider the coupling of the failure modes. The strength by Yamada-Sun method neglecting the matrix failure effect are located between other two methods and shows best agreement with test result for laminate with hole.

  • PDF

Optimization of Body Section usign Hybrid Model (혼합모델을 이용한 차체 단면의 최적화 방법에 관한 연구)

  • 고병식
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.437-443
    • /
    • 2000
  • The optimal design problem for increasing dynamic stiffness using hybrid model which composed of original detailed BIW(body in white) and impinged beam elements is investigated. Using the characteristics of the beam elements and design sensitivity analysis this approach utilizes an optimization technique to determine the optimal section properties of beam elements. The constraint is to increase the first natural frequency by five percent compared with original one. The results show that the first torsion and bending natural frequencies are increased by five percent using hybrid model and optimization. These results indicate that this optimization method can be employed to enhance the dynamic stiffness of vehicle body structure in design concept stage.

  • PDF

Kinematic Control of Double Pantograph Type Manipulator Using Neural Network (신경회로망을 이용한 더블 팬터그래프형 매니퓰레이터의 기구학적 제어)

  • 김성철;정원지;신중호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.20-24
    • /
    • 1997
  • In general, pantograph type manipulators are used for carrying heavy payloads with positional accuracy. In this paper, a double pantograph type manipulator, activated by two slider joints, is studied for applying to file handing machine in atomic power plant. In order to realize the stable horizontal movement of a heavy fuel rod whit good positional accuracy, methods for allocating slider and finding constant joint rates are proposed. In addition, the static deflection of the proposed mechanism was studied using transfer-stiffness matrix method. A neural network control algorithm which compensates static deflections is explored with computer simulations.

  • PDF

Stiffness and Load Matrix for Finite Parallelogrammic Plate Bending Element (평행사변형 유한요소의 강성 매트릭스와 하중 매트릭스)

  • 조병완
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.28-32
    • /
    • 1989
  • In the recent years, parallelogrammic shape structures were often introduced in the Civil Engineering. Especially parallelogrammic shape highway slabs, which were used in the portions of Interstate-75, U.S.A., were a unique one to result in only one wheel crossing the joint at any one time. In this reserch, major efforts were made to provide an appropriate subroutine program and to study an analytical behavior of paralleloqrammic plate bending element by developing the stiffness and load matrices.

  • PDF

A Formula for Member Stiffness of Bolt-Jointed Part with a Sleeve (슬리브가 있는 볼트 체결부의 판재강성 공식)

  • 권영두;윤태혁;임범수;이일희
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • 기계구조물을 슬리브 없이 볼트-너트 체결하는 경우 판재의 강성에 대해서는 많은 연구가 진행되어 신뢰할 수 있는 이론이 보고되어 있다. 그러나 토목 분야에서 많이 사용되는 슬리브가 있는 볼트-너트 체결부에 대한 연구는 미진한 상태이다. 본 연구에서는 슬리브가 있는 경우 볼트-너트로 체결된 판재의 강성을 계산하는 공식을 유도하고 이를 콘크리트 구조물의 예에 적용하였다. 제안된 공식의 결과를 단순합산식과 유한요소법에 의한 결과와 비교하여 그 타당성과 유용성을 밝혔다. 본 연구에서 제안한 공식은 슬리브가 있는 체결부의 판재 강성을 계산하는데 유용하게 사용할 수 있을 것이다.

  • PDF

Evaluation of the Stability of Ipseok-dae Columnar Joints in Mudeungsan National Park Using 3DEC (3DEC을 이용한 무등산국립공원 입석대 주상절리대의 안정성 평가)

  • Noh, Jeongdu;Kang, Seong Sueng
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.351-361
    • /
    • 2022
  • Numerical analysis performed to predict the behavior of Ipseok-dae columnar joints in Mudeungsan National Park to understand their stability and movement. The numerical analysis technique, 3DEC, is based on the discrete element method that can analysis discontinuities. The analysis used data for material properties derived from laboratory tests, which found that average density was 2.68 kN/m3, average normal stiffness was 3.15 GPa/m, average shear stiffness was 1.00 GPa/m, average cohesion was 0.51 MPa, and the average friction angle was 33°. The Ipseok-dae columnar joints were modeled on the basis of the field survey data for 15 joints located between the observation platform and the hiking trail. The numerical analysis assessed the behavior of each columnar joint by interpreting the displacement of the edges of its upper and lower surfaces. The greatest maximum displacement was found in columnar joint No. 6, and the greatest minimum displacement was found in joint No. 11. Analyzing the movements of five discontinuities in joint No. 11 indicated that the maximum displacement occurred at the 2nd level. The other levels were ordered 5th, 4th, 1st, and 3rd in terms of subsequent greatest displacements. Considering the total displacement in the 15 studied joints, the Ipseok-dae columnar joints are judged to be stable. However, considering the cultural and historical value of Mudeungsan National Park, it is regarded that the currents slope stability should be maintained by monitoring the individual rock blocks of the joints.

Track Longitudinal Irregularities at Bridge Deck Expansion Joint with ZLR(Zero Longitudinal Restraint) (활동체결장치가 설치된 교량상판 신축이음부에서의 궤도고저틀림에 미치는 영향)

  • Eom, Jong-Woo;Kim, Si-Chul;Kim, In-Jae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1093-1098
    • /
    • 2007
  • In designing the high-speed railroad track, it is important to utilize appropriate track components to maintain uniform stiffness and ensure track alignment within the tolerance set for that system. In this regard, continuous welded rails (CWRs) were introduced to the Korean railways. Yet the installation of CWRs can result in an adverse impact due to the track/structure interaction on bridge sections yielding variations in the stiffness at the expansion joints. It may also impose additional axial force, generate excessive stress or deflection on track, and loosen the ballast at the ends as a bridge deck contracts or expands owing to a thermally-induced dynamic response. The risk is even greater in a long bridge deck, resulting in track longitudinal irregularities, deteriorating passenger's comfort, and increasing maintenance efforts. This study evaluates the performance of ZLR and their impact on track longitudinal irregularities through the track measuring results on a test section installed the ZLR in order to minimize the thermally-induced responses and the maintenance efforts for the high speed railway bridges.

  • PDF