• Title/Summary/Keyword: stiffness of joint

Search Result 822, Processing Time 0.021 seconds

Effect of Walking with Combat Boots on the Muscle Tone and Stiffness of Lower Extremity

  • Wang, Joongsan;Park, Sieun;Kim, Jeongja
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.4
    • /
    • pp.2221-2228
    • /
    • 2020
  • Background: Shoes cover the feet and ankle joints and come into contact with the ground directly during walking, and the shape of shoes is related to the muscle tone of the lower extremity muscles. However, no study has been conducted on the muscle tone of the lower extremity after wearing combat boots. Objectives: To compare and analyze the effects of walking in combat boots and in athletic shoes on muscle tone and stiffness, to identifying the effect of the characteristics of shoes on the muscle tone. Design: Randomized controlled trial. Methods: Thirty subjects were randomly divided into a combat boots group and an athletic shoes group, and interventions were implemented. Both groups walked for 30 minutes on a treadmill at 4.2 km/h. MyotonPRO was used to measure the muscle tone and stiffness of the lower extremity. The measuring sites were set to five muscles on both legs. Results: In the combat boots group, muscle tone and stiffness of the medial gastrocnemius on the dominant side, the muscle tone and stiffness of rectus femoris, and the muscle stiffness of hamstring on the non-dominant side significantly decreased after walking. In the athletic shoes group, there was no significant change in the muscle tone and stiffness. Conclusion: The results of this study can be used to inform the wearing combat boots while walking on a treadmill reduces the muscle tone and stiffness of the lower extremity compared to athletic shoes. It indicates that the restriction of joint movement occurring when wearing combat boots influences reducing muscle tone and stiffness.

The Mechanism Study of Gait on a Load and Gender Difference

  • Ryew, Checheong;Hyun, Seunghyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2021
  • Gait kinematics and kinetics have a similar tendency between men and women, yet it remains unclear how walking while carrying a load affects the gait mechanism. Twenty adults walked with preferred velocity on level ground of 20 m relative to change of a load carriage (no load, 15%, 30% of the body weights) aimed to observe gait mechanism. We measured gait posture using the three-dimensional image analysis and ground reaction force system during stance phase on left foot. In main effect of gender difference, men showed increased displacement of center of gravity (COG) compared to women, and it showed more extended joint angle of hip and knee in sagittal plane. In main effect of a load difference, knee joint showed more flexed postuel relative to increase of load carriage. In main effect of load difference on the kinetic variables, medial-lateral force, anterior-posterior force (1st breaking, 2nd propulsive), vertical force, center of pressure (COP) area, leg stiffness, and whole body stiffness showed more increased values relative to increase of load carriage. Also, men showed more increased COP area compared to women. Interaction showed in the 1st anterior-posterior force, and as a result of one-way variance analysis, it was found that a load main effect had a greater influence on the increase in the magnitude of the braking force than the gender. The data in this study explains that women require little kinematic alteration compared to men, while men in more stiff posture accommodate an added load compared to women during gait. Additionally, it suggests that dynamic stability is maintained by adopting different gait strategies relative to gender and load difference.

Reliability Analysis of Temporary Structures Considering Uncertainty in Rotational Stiffness at Member Joints (부재 연결부 회전 강성의 불확실성을 고려한 가설 구조물의 신뢰성 해석)

  • Ryu, Seon-Ho;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.87-94
    • /
    • 2019
  • This study deals with the reliability analysis approach of the temporary structure that can consider the uncertainty in rotational stiffness at the joints of the members, for which the semi-rigid connections are modelled as rotational spring and its coefficient is treated as a random variable following uniform distribution. In addition, this study introduces a computational procedure of the effective length coefficient for more accurate buckling load according to connection conditions of the supporting members attached to the joint. From the results of this study, it can be seen that the failure probability of the joint-hinge model (Case 1) presented in the design standard is higher than that of the practical model (Case 5) considering the rotational stiffness at the joints. This implies that the design standard leads to a conservative design of the temporary structure. The results also confirmed that the failure probability of the vertical member, i.e., the most critical member, can be further reduced when the base connection is provided with a fixed end. The comparative results between FORM, SORM and MCS further demonstrated that FORM can have a high level of numerical efficiency while ensuring the accuracy of the solution, compared with SORM and MCS. Based on these results, the proposed approach can be used as an accurate and efficient reliability analysis method of the three dimensional temporary structure.

A study on the factors influencing the segment lining design solved by beam-spring model in the shield tunnel (쉴드 터널 세그먼트 라이닝 설계에서 빔-스프링 구조 모델이 단면력에 미치는 영향)

  • Kim, Hong-moon;Kim, Hyun-su;Shim, Kyung-mi;Ahn, Sung-youll
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.179-194
    • /
    • 2017
  • The segment lining design for shield tunnel is generally carried out by using the beam-spring model and the induced member forces from the model are strongly influenced by the components of the model such as imposed load, coefficient of subgrade reaction, location of segment joint and its stiffness. The structural models and stiffness of its connection part found used in abroad design cases is usually obtained as it is for the domestic design of segment of shield tunnel. Those models and stiffness in existing design cases are conventionally applied to a new tunnel design without any suitability review for the project. In this study, the application method of base components of the model such as the coefficient of subgrade reaction and modelling method to the segment lining design was suggested by carrying out the comparative study of the base elements for the member forces estimation of segment lining of shield tunnel.

Relationship between shear behavior characteristics and mechanical parameters of fractures (절리면에서의 전단거동 특성과 역학적 파라미터들 간의 상관성)

  • 이종욱;이찬구;황신일;장천중;최원학
    • The Journal of Engineering Geology
    • /
    • v.3 no.1
    • /
    • pp.1-20
    • /
    • 1993
  • In this study, laboratory direct shear tests on 37 core specimens of gneiss were performed to examine the characteristics of shear behavior on fractures by using a portable direct shear box. The multi-stage shear testing method was used and normal stress applied to specimens ranges from 5.60 to $25.67kg/\textrm{cm}^2$. On the basis of test results, the empirical equations for the shear strength on fractures were suggested. The methanical parameters that can influence the shear behavior were derived and compared between each parameter. The values of shear stiffness have a trend showing rapid increase with the increase of normal stress and joint roughness coeffident, and the average value of secant shear stiffness for all specimens is about $110.68kg/\textrm{cm}^3$ under the range of normal stress applied in this test In addition, the relationship between the length of specimen and shear stiffness is inversely correlated due to the size effect. Therefore, even the specimens with the same joint roughness coeffident show the trend of decreasing shear stiffness in case of the specimens being the longer length.

  • PDF

Bolted joints for single-layer structures: numerical analysis of the bending behaviour

  • Lopez-Arancibia, A.;Altuna-Zugasti, A.M.;Aldasoro, H. Aizpurua;Pradera-Mallabiabarrena, A.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.355-367
    • /
    • 2015
  • This paper deals with a new designed joint system for single-layer spatial structures. As the stability of these structures is greatly influenced by the joint behaviour, the aim of this paper is the characterization of the joint response in bending through Finite Element Method (FEM) analysis using ABAQUS. The behaviour of the joints studied here was influenced by many geometrical factors, such as bolts and plate sizes, distance between bolts and end-plate thickness. The study comprised five models of joints with different values of those parameters. The numerical results were compared to the results of previous experimental tests and the agreement was good enough. The differences between the numerical and experimental initial stiffness are attributed to the simplifications introduced when modelling the bolt threads as well as the presence of residual stresses in the test specimens.

Articular loose body, Synovial Chondromatosis of the Temporomandibular Joint : a Case Report (측두하악관절의 소성체를 동반한 활액성 연골종증 : 증례보고)

  • Choi, Byung-Joon;Lee, Baek-Soo;Kim, Yeo-Gab;Kwon, Yong-Dae;Kim, Young-Ran
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.5
    • /
    • pp.310-311
    • /
    • 2009
  • Synovial chondromatosis is an uncommon disease of cartilage transformation of synovial membrane with formation of loose bodies within the joint space. The involvement of temporomandibular joint is very rare. Symtoms include swelling, pain, stiffness of the jaw, and inability to close the jaw. A case involving the temporomandibular joint(TMJ) and non-symptoms is presented.

Exposed Reinforced Concrete-Filled Steel Tubular (RCFST) column-base joint with high-strength

  • Mou, Ben;Wang, Zian;Qiao, Qiyun;Zhou, Wanqiu
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • The weld quality has always been an important factor affecting the development of exposed CFT column-base joint. In this paper, a new type of exposed RCFST column-base joint is proposed, in which the high strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens, the varying axial force ratio (0, 0.25 and 0.5), were tested under cyclic loadings. In addition, the bending moment capacity, energy dissipation capacity and deformation capacity of column-base joints were clarified. The experimental results indicated that the axial force ratio increases the stiffness and the bending moment and improves the energy dissipation capacity of column-base joints. This is because a large axial force can limit the slip between steel tubular and infilled concrete effectively. The specimens show stable hysteresis behavior.

PROCEDURE FOR COMPUTER-AIDED PRELOAD SELECTION OF ENGINE CONNECTING-ROD BOLTS

  • Cho, S.S.;Chang, H.;Lee, K.W.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.319-325
    • /
    • 2007
  • Preload of critical engine bolts affects the performance and durability of engines. In modern engines that pursue higher power outputs and which are of lighter weight, it becomes more difficult to select an optimal target preload in consideration of various factors such as the role and structural characteristics of joint members, joint load, and fatigue durability of bolts and joint members. A procedure to select the bolt preload using computer-aided engineering technology, especially the finite element method, has been developed. The procedure is illustrated with connecting-rod bolts for which an appropriate preload is known. The selection criteria of target preload and the finite element modeling technique for connecting-rod bolts are also explained.

Estimations of the Hysteretic Damping by Controlled Joint Flexibilities (결합부 유연성에 따른 감쇠거동에 관한 고찰 : 히스테레틱 감쇠)

  • 윤성호
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.258-264
    • /
    • 1999
  • The purpose of this paper is to investigate the damping behavior of a flexible joint. The slip at a structrual joint is selected at the tips of two identical cantilever beams adjoining each other. Both the direction of normal force and its magnitude varies due to the global deformation of the structure from mode to mode in the friction model. The friction dependent on vibration displacements resultsin the same functional behavior of the hysteretic material damping. Linearized energy loss factors are obtained as functions of both linear and torsional spring stiffness for their groups of symmetric and anti-symmetric modes, respectively. Experimental measurements as made for comparisons with analytical estimations by controlling the magnitude of fastening torque in the fastener, Hi-Lite. Trends on damping levelsmeasured in a very common vibration test method make an excellent agreement on the estimated damping levels.

  • PDF