• Title/Summary/Keyword: stiffness calibration

Search Result 55, Processing Time 0.024 seconds

Modelling and Measurements of Normal and Lateral Stiffness for Atomic Force Microscopy

  • Choi, Jinnil
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.240-247
    • /
    • 2014
  • Modelling and measurements of normal and lateral stiffness for atomic force microscopy (AFM) are presented in this work. Important issues, such as element discretisation, stiffness calibration, and deflection angle are explored using the finite element (FE) model. Elements with various dimension ratios are investigated and comparisons with several mathematical models are reported to verify the accuracy of the model. Investigation of the deflection angle of a cantilever is also shown. Moreover, AFM force measurement experiments with conical and colloid probe tips are demonstrated. The relationships between force and displacement, required for stiffness measurement, in normal and lateral directions are acquired for the conical tip and the limitations of the colloid probe tip are highlighted.

Accuracy Improvement of a 5-axis Hybrid Machine Tool (5축 혼합형 공작기계의 정밀도 향상 연구)

  • Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.84-92
    • /
    • 2014
  • In this paper, a novel 5-axis hybrid-kinematic machine tool is introduced and the research results on accuracy improvement of the prototype machine tool are presented. The 5-axis hybrid machine tool is made up of a 3-DOF parallel manipulator and a 2-DOF serial one connected in series. The machine tool maintains high ratio of stiffness to mass due to the parallel structure and high orientation capability due to the serial-type wrist. In order to acquire high accuracy, the methodology of measuring the output shafts by additional sensors instead of using encoder outputs at the motor shafts is proposed. In the kinematic view point, the hybrid manipulator reduces to a serial one, if the passive joints in the U-P serial chain at the center of the parallel manipulator are directly measured by additional sensors. Using the method of successive screw displacements, the kinematic error model is derived. Since a ball-bar is less expensive than a full position measurement device and sufficiently accurate for calibration, the kinematic calibration method of using a ball-bar is presented. The effectiveness of the calibration method has been verified through the simulations. Finally, the calibration experiment shows that the position accuracy of the prototype machine tool has been improved from 153 to $86{\mu}m$.

Design and Fabrication of 6-Component Forces and Moments Sensor Using a Column Structure (원기둥을 이용한 6축 힘/모멘트 센서의 설계 및 제작)

  • Shin, Hong-Ho;Kim, Jong-Ho;Park, Yon-Kyu;Joo, Jin-Won;Kang, Dae-Im
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1288-1295
    • /
    • 2002
  • The column-type sensing element in building and mechanical construction parts was designed as three forces and three moments sensor by attaching strain gages approximately. Compared to conventional multi-component sensor, the designed sensor has high stiffness and low cost. The radius of the column was designed analytically and compared with finite element analysis. The interference errors between components were minimized by using addition and subtraction procedure of signals. The fabricated sensor was tested by using a deadweight force standard machine and a six-component force calibration machine. The calibration results showed that the 6-component forces and moments sensor had interference error less than 7.3 % between $F_x$ and $M_x$ components, and 5.0 % in case of other components.

Sensing method of multi-component forces and moments using a column structure (기둥을 이용한 다축 힘/모멘트 감지 방법에 관한 연구)

  • Shin, H.H.;Kang, D.I.;Park, Y.K.;Kim, J.H.;Joo, J.W.;Kim, O.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.837-841
    • /
    • 2001
  • The column-type sensing element in building and mechanical construction parts was designed as three forces and three moments sensor by attaching strain gages approximately. Compared to conventional multi-component sensor, the designed sensor can solve the problem about low stiffness and high cost. The radius of the column was designed analytically and compared with finite element analysis. The coupling errors between components were minimized by using addition and subtraction procedure of signals. The fabricated sensor was tested by using a deadweight force standard machine and a six-component force calibration machine in Korea Research Institute of Standards and Science(KRISS). The calibration showed that the multi-component force/moment sensor had coupling error less than 19.8 % between $F_x$ and $M_y$ components, and 9.0 % in case of other components.

  • PDF

Installation Error Calibration by Using Levenberg-Marquardt Method on a Cubic Parallel Manipulator (Levenberg-Marquardt 방법을 이용한 육면형 병렬기구의 설치 오차 보정)

  • 임승룡;임현규;최우천;송재복;홍대희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.184-191
    • /
    • 2003
  • A parallel manipulator has high stiffness and all the joint errors on the device are not accumulated at the end -effector unlike a serial manipulator. These are the reasons why the parallel manipulator has been widely used in many fields of industry. In the parallel manipulator, it is very important to predict the exact pose of the end-effector when we want to control the end-effector motion. Installation errors have to be determined in order to predict and control the actual position and pose of the end-effector. This paper presents an algorithm to find the whole 36 joint error components with joint clearance errors and measurement errors considered, when a link length measurement sensor is used and data more than 36 times are acquired for 36 different configurations. A simulation test using this algorithm is performed with a Matlab program which uses the Levenberg-Marquardt method that is known to be efficient for non-linear optimization.

Experiments and Numerical Studies on Coil Shaped Elastoplastic Dampers (코일형 탄소성 감쇠기에 대한 실험 및 수치해석적 연구)

  • ;;Kurabayashi, Hiroshi;Ishimaru, Shinji
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.381-388
    • /
    • 2001
  • Behavior characteristics of coil shaped elastoplastic dampers, a sort of hysteretic damper, are studied on through experiments and numerical analyses. The coil shaped elastoplastic damper shows bilinear force-deformation relationship, and no stress concentration is occurred in the device. Numerical model, which is constructed through calibration with experimental results, shows good agreement with experiment, The coil shaped elastoplastic damper has lower yielding strength and stiffness under transversal loading compared to axial leading. Additional studies are required on behavior characteristics according to configuration variation of coil shaped elastoplastic dampers.

  • PDF

A Study on the Forming Process of Stair Type Side Sill for Automobile using DP780 (DP780이 적용된 자동차용 계단형 사이드실의 성형공정 연구)

  • Suh, C.H.;Shin, H.D.;Jung, Y.C.;Park, C.D.;Lim, Y.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.301-306
    • /
    • 2009
  • High strength steels are widely used for lightweight automobile parts and the control of springback is very important in sheet metal forming. The object of this study is to develop the forming process for stair type side sill made of high strength steel, DP780. Stair type side sill with local formed area and geometry change area can improve stiffness and design freedom but there are a few studies for forming process. The forming technology considered in this paper is form type process, which have many advantages for farming of high strength steel compared with draw type process. Finite element analysis is carried out to predict formability and springback. It is shown that angle calibration of die is essential for reducing springback, and local forming involving bead is effective to control springback also. The effectiveness of local forming and angle calibration is verified by experimental.

  • PDF

Calibration of Parameters for Predicting Hysteretic Behavior of Diagonally Reinforced Concrete Coupling Beams (반복하중을 받는 대각보강 콘크리트 연결보의 이력거동 예측을 위한 매개변수 결정방법)

  • Koh, Hyeyoung;Han, Sang Whan;Heo, Chang Dae;Lee, Chang Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.303-310
    • /
    • 2017
  • The coupled shear wall system with coupling beams is an efficient structural system for high-rise buildings because it can provide excellent ductility and energy dissipation to the buildings. The objective of this study is to simulate the hysteretic behavior of diagonally reinforced concrete coupling beams including pinching and cyclic deteriorations in strength and stiffness using a numerical model. For this purpose, coupling beams are modeled with an elastic beam element and plastic spring element placed at the beam ends. Parameters for the analytical model was calibrated based on the test results of 6 specimens for diagonally reinforced concrete coupling beams. The analytical model with calibrated model parameters is verified by comparing the hysteretic curves obtained from analysis and experimental tests.

A Study on the Forming Process of Stair Type Side Sill for Automobile using DP780 (DP780이 적용된 자동차용 계단형 사이드실의 성형공정 연구)

  • Suh, C.H.;Shin, H.D.;Jung, Y.C.;Park, C.D.;Lim, Y.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.601-606
    • /
    • 2009
  • High strength steels are widely used for lightweight automobile parts and the control of springback is very important in sheet metal forming. The object of this study is to develop the forming process for stair type side sill made of high strength steel, DP780. Stair type side sill with local formed area and geometry change area can improve stiffness and design freedom but there are few studies for forming process. The forming technology considered in this paper is form type process, which has many advantages for forming of high strength steel compared with draw type process. Finite element analysis is carried out to predict formability and springback. It is shown that angle calibration of die is essential for reducing springback, and local forming involving bead is effective to control springback also. The effectiveness of local forming and angle calibration is verified by experimental.

Winkler spring behavior in FE analyses of dowel action in statically loaded RC cracks

  • Figueira, Diogo;Sousa, Carlos;Neves, Afonso Serra
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.593-605
    • /
    • 2018
  • A nonlinear finite element modeling approach is developed to assess the behavior of a dowel bar embedded on a single concrete block substrate, subjected to monotonic loading. In this approach, a discrete representation of the steel reinforcing bar is considered, using beam finite elements with nonlinear material behavior. The bar is connected to the concrete embedment through nonlinear Winkler spring elements. This modeling approach can only be used if a new constitutive model is developed for the spring elements, to simulate the deformability and strength of the concrete substrate. To define this constitutive model, an extensive literature review was conducted, as well as 3 experimental tests, in order to select the experimental data which can be used in the calibration of the model. Based on this data, an empirical model was established to predict the global dowel response, for a wide range of bar diameters and concrete strengths. This empirical model provided the information needed for calibration of the nonlinear Winkler spring model, valid for dowel displacements up to 4 mm. This new constitutive model is composed by 5 stages, in order to reproduce the concrete substrate response.