• 제목/요약/키워드: stiffening beam

검색결과 77건 처리시간 0.026초

Connections between RC beam and square tubed-RC column under axial compression: Experiments

  • Zhou, Xu-Hong;Li, Bin-Yang;Gan, Dan;Liu, Jie-Peng;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.453-464
    • /
    • 2017
  • The square tubed-reinforced concrete (TRC) column is a kind of special concrete-filled steel tube (CFST) columns, in which the outer thin-walled steel tube does not pass through the beam-column joint, so that the longitudinal steel reinforcing bars in the RC beam are continuous through the connection zone. However, there is a possible decrease of the axial bearing capacity at the TRC column to RC beam connection due to the discontinuity of the column tube, which is a concern to engineers. 24 connections and 7 square TRC columns were tested under axial compression. The primary parameters considered in the tests are: (1) connection location (corner, exterior and interior); (2) dimensions of RC beam cross section; (3) RC beam type (with or without horizontal haunches); (4) tube type (with or without stiffening ribs). The test results show that all specimens have relatively high load-carrying capacity and satisfactory ductility. With a proper design, the connections exhibit higher axial resistance and better ductility performance than the TRC column. The feasibility of this type of connections is verified.

Numerical modelling of FRP strengthened RC beam-column joints

  • Mahini, Seyed S.;Ronagh, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • 제32권5호
    • /
    • pp.649-665
    • /
    • 2009
  • This paper reports part of a comprehensive research study conducted at the University of Queensland on the ability of CFRP web-bonded systems in strengthening an exterior beam-column joint subjected to monotonic loads. One 1/2.2 scaled plain and four CFRP repaired/retrofitted joints subjected to monotonic loads were analysed using the nonlinear finite-element program ANSYS and the results were calibrated against experiments. The ANSYS model was employed in order to account for tension stiffening in concrete after cracking and a modified version of the Hognestad's model was used to model the concrete compressive strength. The stress-strain properties of main steel bars were modelled using multilinear isotropic hardening model and the FRPs were modelled as anisotropic materials. A perfect bond was assumed as nodes were shared between adjacent elements irrespective of their type. Good agreement between the numerical predictions and the experimental observation of the failure mechanisms for all specimens were observed. Closeness of these results proved that the numerical analysis can be used by design engineers for the analysis of web-bonded FRP strengthened beam-column joints with confidence.

A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects

  • Ebrahimi, Farzad;Haghi, Parisa
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.373-393
    • /
    • 2018
  • This paper is concerned with the wave propagation behavior of rotating functionally graded temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field. Uniform, linear and nonlinear temperature distributions across the thickness are investigated. Thermo-elastic properties of FG beam change gradually according to the Mori-Tanaka distribution model in the spatial coordinate. The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function. The governing equations are derived by Hamilton's principle as a function of axial force due to centrifugal stiffening and displacement. By applying an analytical solution and solving an eigenvalue problem, the dispersion relations of rotating FG nanobeam are obtained. Numerical results illustrate that various parameters including temperature change, angular velocity, nonlocality parameter, wave number and gradient index have significant effect on the wave dispersion characteristics of the understudy nanobeam. The outcome of this study can provide beneficial information for the next generation researches and exact design of nano-machines including nanoscale molecular bearings and nanogears, etc.

Weibull distribution based constitutive model for nonlinear analysis of RC beams

  • Murthy, A. Ramachandra;Priya, D. Shanmuga
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.463-473
    • /
    • 2017
  • Reinforced concrete is a complex material to be modeled in finite element domain. A proper material model is necessary to represent the nonlinear behaviour accurately. Though the nonlinear analysis of RC structures evolved long back, still an accurate and reliable model to predict the realistic behaviour of components are limited. It is observed from literature that there are three well-known models to represent the nonlinear behaviour of concrete. These models include Chu model (1985), Hsu model (1994) and Saenz model (1964).A new stress-strain model based on Weibull distribution has been proposed in the present study. The objective of the present study is to analyze a reinforced concrete beam under flexural loading by employing all the models. Nonlinear behaviour of concrete is considered in terms of stress vs. strain, damage parameter, tension stiffening behaviour etc. The ductility of the RC beams is computed by using deflection based and energy based concepts. Both deflection ductility and energy based ductility is compared and energy based concept is found to be in good correlation with the experiments conducted. The behavior of RC beam predicted using ABAQUS has been compared with the corresponding experimental observations. Comparison between numerical and experimental results confirms that these four constitutive models are reliable in predicting the behaviour of RC structures and any of the models can be employed for analysis.

Computer aided failure prediction of reinforced concrete beam

  • Islam, A.B.M. Saiful
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.67-73
    • /
    • 2020
  • Traditionally used analytical approach to predict the fatigue failure of reinforced concrete (RC) structure is generally conservative and has certain limitations. The nonlinear finite element method (FEM) offers less expensive solution for fatigue analysis with sufficient accuracy. However, the conventional implicit dynamic analysis is very expensive for high level computation. Whereas, an explicit dynamic analysis approach offers a computationally operative modelling to predict true responses of a structural element under periodic loading and might be perfectly matched to accomplish long life fatigue computations. Hence, this study simulates the fatigue behaviour of RC beams with finite element (FE) assemblage presenting a simplified explicit dynamic numerical solution to show computer aided fatigue behaviour of RC beam. A commercial FEM package, ABAQUS has been chosen for this complex modelling. The concrete has been modelled as a 8-node solid element providing competent compression hardening and tension stiffening. The steel reinforcements are simulated as two-node truss elements comprising elasto-plastic stress-strain behaviour. All the possible nonlinearities are duly incorporated. Time domain analysis has been adopted through an automatic Newmark-β time incremental technique. The program consists of twelve RC beams to visualize the real behaviour during fatigue process and to obtain the reliability of the study. Both the numerical and experimental results indicate a redistribution of stresses along the time and damage accumulation of beam which severely affect the serviceability and ultimate capacity of RC beam. The output of the FEM analysis demonstrates good match with the experimental consequences which affirm the efficacy of the computer aided model. The controlled fatigue damage evolution at service fatigue load limits makes the FE model an efficient tool in predicting high cycle fatigue behaviour of RC structures.

A modified RBSM for simulating the failure process of RC structures

  • Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan;Shen, Mingyan
    • Computers and Concrete
    • /
    • 제21권2호
    • /
    • pp.219-229
    • /
    • 2018
  • In this paper, a modified rigid body spring model (RBSM) is proposed and used to analyze the damage and failure process of reinforced concrete (RC) structures. In the proposed model, the concrete is represented by an assembly of rigid blocks connected with a uniform distribution of normal and tangential springs to simulate the macroscopic mechanical behavior of concrete. Steel bars are evenly dispersed into rigid blocks as a kind of homogeneous axial material, and an additional uniform distribution of axial and dowel springs is defined to consider the axial stiffness and dowel action of steel bars. Perfect bond between the concrete and steel bars is assumed, and tension stiffening effect of steel bars is modeled by adjusting the constitutive relationship for the tensile reinforcement. Adjacent blocks are allowed to separate at the contact interface, which makes it convenient and easy to simulate the cracking process of concrete. The failure of the springs is determined by the Mohr-Coulomb type criterion with the tension and compression caps. The effectiveness of the proposed method is confirmed by elastic analyses of a cantilever beam under different loading conditions and failure analyses of a RC beam under two-point loading.

Retrofitting by adhesive bonding steel plates to the sides of R.C. beams. Part 1: Debonding of plates due to flexure

  • Oehlers, Deric. J.;Nguyen, Ninh T.;Bradford, Mark A.
    • Structural Engineering and Mechanics
    • /
    • 제9권5호
    • /
    • pp.491-504
    • /
    • 2000
  • A convenient method for enhancing the strength and stiffness of existing reinforced concrete beams is to bond adhesively steel plates to their tension faces. However, there is a limit to the applicability of tension face plating as the tension face plates are prone to premature debonding and, furthermore, the addition of the plate reduces the ductility of the beam. An alternative approach to tension face plating is to bond adhesively steel plates to the sides of reinforced concrete beams, as side plates are less prone to debonding and can allow the beam to remain ductile. Debonding at the ends of the side plates due to flexural forces, that is flexural peeling, is studied in this paper. A fundamental mathematical model for flexural peeling is developed, which is calibrated experimentally to produce design rules for preventing premature debonding of the plate-ends due to flexural forces. In the companion paper, the effect of shear forces on flexural peeling is quantified to produce design rules that are applied to the strengthening and stiffening of continuous reinforced concrete beams.

조립형 무용접 좌굴방지재로 보강된 역V형 가새의 변형성능 (Deformation Capacity of Inverted V-Type Brace Strengthened by Built-up Non-welded Buckling Restraint Element)

  • 김선희;문지영;최성모
    • 한국강구조학회 논문집
    • /
    • 제27권3호
    • /
    • pp.261-271
    • /
    • 2015
  • 철골 중심 가새 골조는 최소의 물량으로 건물의 횡력에 대한 저항력을 확보할 수 있는 매우 효과적인 시스템이다. 본 논문에서는 기 설치된 H형 가새를 무 용접 냉간 성형보강재로 보강하여 휨-좌굴을 억제하고 인장력과 압축력에 동일한 강도를 확보하는 보강안에 대한 연구를 진행하였다. 역 V형 가새 골조에 설치된 H형가 새의 보강방안으로 선행연구의 보강재를 약축 보강형으로 변경하여 보강방안을 제시하고 부재실험, 부재변수해석, 골조실험을 통해 구조성능을 평가하였다. 보강된 가새는 AISC기준을 만족하였다. 이를 통해 보강으로 골조내 가새의 불 균형력에 의한 보의 파괴가 방지될 것으로 기대된다.

가우스 적분점을 수정한 2차원 6-절점 요소 및 3차원 16-절점 요소에 의한 자유진동해석 (The Free Vibration Analyses by Using Two Dimensional 6-Node Element and Three Dimensional 16-Node element with Modification of Gauss Sampling Point)

  • 김정운;경진호;권영두
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.2922-2931
    • /
    • 1994
  • We propose a modified 6-node element, where the sampling point of Gauss quadrature moved in the thickness direction. The modified 6-node element has been applied to static problems and forced motion analyses. In this study, this method is extended to the finite element analysis of the natural frequencies of two dimensional problems. We also propose a modified 16-node element for three dimensional problems, which behaves much like a 20-node element with smaller degree of freedom. The modified 6-node and 16-node elements have been applied to the modal analyses of beams and plates, respectively. The results agree well with the results of the 8-node or 20-node element models.

박스형 철골빔이 적용된 프리스트레스 할로우-코어 합성슬래브의 해석연구 (An Analytic Study of Composite Hollow Core Slab Subjected with Box Type Beams)

  • 홍성걸;서도원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.311-314
    • /
    • 2005
  • This research aims to analyze of prestressed composite hollow-core slab and box type steel beam. The smeared crack model used in abaqus for the modeling of hollow core reinforced concrete, including cracking of the concrete, rebar and concrete interaction using the tension stiffening concept, and rebar yield. The structure modeled is a simply supported hollow core spancrete slab subjected spa-h beams and prestressed in one direction. The hollow core spancrete slab is subjected to four-point bending. The concrete-rebar interaction that occur as the concrete begins to crack are of major importance in determining the spancrete slab's response between its initial, deformation and its collapse. This smeared crack model used in analysis involved non-liner concrete analysis concept.

  • PDF