• Title/Summary/Keyword: stiffened

Search Result 595, Processing Time 0.021 seconds

Physiologic Phonetics for Korean Stop Production (한국어 자음생성의 생리음성학적 특성)

  • Hong, Ki-Hwan;Yang, Yoon-Soo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.17 no.2
    • /
    • pp.89-97
    • /
    • 2006
  • The stop consonants in Korean are classified into three types according to the manner of articulation as unaspirated (UA), slightly aspirated (SA) and heavily aspirated (HA) stops. Both the UA and the HA types are always voiceless in any environment. Generally, the voice onset time (VOT) could be measured spectrographically from release of consonant burst to onset of following vowel. The VOT of the UA type is within 20 msec of the burst, and about 40-50 msec in the SA and 50-70 msec in the HA. There have been many efforts to clarify properties that differentiate these manner categories. Umeda, et $al^{1)}$ studied that the fundamental frequency at voice onset after both the UA and HA consonants was higher than that for the SA consonants, and the voice onset times were longest in the HA followed by the SA and UA. Han, et $al^{2)}$ reported in their speech synthesis and perception studies that the SA and UA stops differed primarily in terms of a gradual versus a relatively rapid intensity build-up of the following vowel after the stop release. Lee, et $al^{3)}$ measured both the intraoral and subglottal air pressure that the subglottal pressure was higher for the HA stop than for the other two stops. They also compared the dynamic pattern of the subglottal pressure slope for the three categories and found that the HA stop showed the most rapid increase in subglottal pressure in the time period immediately before the stop release. $Kagaya^{4)}$ reported fiberscopic and acoustic studies of the Korean stops. He mentioned that the UA type may be characterized by a completely adducted state of the vocal folds, stiffened vocal folds and the abrupt decreasing of the stiffness near the voice onset, while the HA type may be characterized by an extensively abducted state of the vocal folds and a heightened subglottal pressure. On the other hand, none of these positive gestures are observed for the SA type. Hong, et $al^{5)}$ studied electromyographic activity of the thyroarytenoid and posterior cricoarytenoid (PCA) muscles during stop production. He reported a marked and early activation of the PCA muscle associated with a steep reactivation of the thyroarytenoid muscle before voice onset in the production of the HA consonants. For the production of the UA consonants, little or no activation of the PCA muscle and earliest and most marked reactivation of the thyroarytenoid muscle were characteristic. For the SA consonants, he reported a more moderate activation of the PCA muscle than for the UA consonant, and the least and the latest reactivation of the thyroarytenoid muscle. Hong, et $al^{6)}$ studied the observation of the vibratory movements of vocal fold edges in terms of laryngeal gestures according to the different types of stop consonants. The movements of vocal fold edges were evaluated using high speed digital images. EGG signals and acoustic waveforms were also evaluated and related to the vibratory movements of vocal fold edges during stop production.

  • PDF

Sensitivity Analysis of Dynamic Characteristics of Structural Systems by the Transfer Matrix Method and the Combined Finite Element-Transfer Matrix Method (전달매트릭스법 및 유한요소-전달매트릭스 결합방법에 의한 구조계의 동특성 감도해석)

  • D.S. Cho;K.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.143-157
    • /
    • 1992
  • For the design of structural systems having the prescribed or optimum dynamic characteristics, some design changes of the initially designed system are required. In these cases, if the sensitivity analysis which can predict the changes of dynamic characteristics due to the changes of design variables is applied, the design changes can be carried out rationally and very efficiently. For many structural systems, it is well known that the analysis by the transfer matrix method(TMM) and the combined finite element-transfer matrix method(FETMM) is more efficient than the analysis by the finite element method. However, most known studies on the sensitivity analysis of structural systems premise using the finite element method. In this paper, the sensitivity analysis methods by the TMM and the FETMM are presented and some numerical investigations on the beam-column with elastically restrained ends and intermediate contraints and the stiffened plate having subsystems are carried out. The results of the numerical examples show good accuracy and computational efficiency of the presented methods, and show that the application of sensitivity analysis in the dynamic characteristic reanalysis give good results within the practically changeable range of design variables.

  • PDF

Numerical Investigation on Structural Behavior of a Lid with Stiffeners for Suction-installed Cofferdams (석션 가물막이 보강 상판의 구조 거동에 대한 수치해석 연구)

  • Kim, Jeongsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.7-17
    • /
    • 2019
  • With increasing demand for large offshore infrastructures, suction cofferdams have been large, and the lid stiffener arrangement for a suction cofferdam has become a key element in cofferdam design to constrain the flexural deformation effectively. This study analyzed the changes in the structural behavior of a lid for a suction cofferdam due to lid stiffeners to provide insights into effective stiffener arrangements. By investigating conventional suction anchors, several stiffener patterns of a lid for a polygonal suction cofferdam were determined and analyzed. The structural performance of the stiffened lids was estimated by comparing the stress and deformation, and the reaction distributions on the edge of lid were investigated to analyze the effects of the stiffener arrangement on the lid-wall interface. Finite element analysis showed that radial stiffeners contribute dominantly to decreasing the stress and vertical deflection of the lids, but the stiffeners cause an increase in shear forces between the lid and wall; the forces are concentrated on the lid near the areas reinforced with radial stiffeners, which is negative to lid-wall connection design. On the other hand, inner and outer circumferential stiffeners show little reinforcement effects in themselves, while they can help reduce the stress and deformation when arranged with partial radial stiffeners simultaneously.

A Study on the Topology Optimization of Nail Arrangement using Stiffened Shape Density (보강 형상밀도를 이용한 네일 배치의 위상최적화 연구)

  • Cho, Chung-Sik;Song, Young-Su;Lee, Su-Gon;Woo, Jae-Gyung;Choi, Woo-Il
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.605-618
    • /
    • 2018
  • Korea follows the slope design criteria during construction. It was enacted by the Ministry of Land, Transport and Maritime Affairs. There are cases where the Soil-nail is designed as a measure to secure slope stability. The arrangement of the soil-nail may be arranged at equal intervals or may be arranged differently depending on the soil failure model. The optimum design of the countermeasure method is determined by securing stability of the slope through optimization of dimensions and shape. However, when uniform nails are placed at low elevations in slopes, the standard safety factor is exceeded, which may hinder economic design. It is preferable to arrange the reinforcement of the nails over the entire slope. When the horizontal spacing of the nails was topology optimized according to the slope height, it was possible to minimize the amount of reinforcement while satisfying the standard safety factor. Since the active load is reduced in the section where the slope height is lowered, the safety factor after reinforcement may be excessively increased. Therefore, the phase optimization method is proposed as an economical optimal design method using the reinforcing shape density. In addition, a relational expression was designed to optimize the horizontal spacing by slope height.

Fluid bounding effect on FG cylindrical shell using Hankel's functions of second kind

  • Khaled Mohamed Khedher;Shahzad Ali Chattah;Mohammad Amien Khadimallah;Ikram Ahmad;Muzamal Hussain;Rana Muhammad Akram Muntazir;Mohamed Abdelaziz Salem;Ghulam Murtaza;Faisal Al-Thobiani;Muhammad Naeem Mohsin;Abeera Talib;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.565-577
    • /
    • 2024
  • Vibration investigation of fluid-filled functionally graded cylindrical shells with ring supports is studied here. Shell motion equations are framed first order shell theory due to Sander. These equations are partial differential equations which are usually solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the Rayleigh-Ritz procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Langrange energy functional is converted into a set of three partial differential equations. A cylindrical shell is immersed in a fluid which is a non-viscous one. These shells are stiffened by rings in the tangential direction. For isotropic materials, the physical properties are same everywhere where the laminated and functionally graded materials, they vary from point to point. Here the shell material has been taken as functionally graded material. After these, ring supports are located at various positions along the axial direction round the shell circumferential direction. The influence of the ring supports is investigated at various positions. Effect of ring supports with empty and fluid-filled shell is presented using the Rayleigh - Ritz method with simply supported condition. The frequency behavior is investigated with empty and fluid-filled cylindrical shell with ring supports versus circumferential wave number and axial wave number. Also the variations have been plotted against the locations of ring supports for length-to-radius and height-to-radius ratio. Moreover, frequency pattern is found for the various position of ring supports for empty and fluid-filled cylindrical shell. The frequency first increases and gain maximum value in the midway of the shell length and then lowers down. It is found that due to inducting the fluid term frequency result down than that of empty cylinder. It is also exhibited that the effect of frequencies is investigated by varying the surfaces with stainless steel and nickel as a constituent material. To generate the fundamental natural frequencies and for better accuracy and effectiveness, the computer software MATLAB is used.