• Title/Summary/Keyword: stick-breaking prior

Search Result 2, Processing Time 0.014 seconds

Nonparametric Bayesian estimation on the exponentiated inverse Weibull distribution with record values

  • Seo, Jung In;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.611-622
    • /
    • 2014
  • The inverse Weibull distribution (IWD) is the complementary Weibull distribution and plays an important role in many application areas. In Bayesian analysis, Soland's method can be considered to avoid computational complexities. One limitation of this approach is that parameters of interest are restricted to a finite number of values. This paper introduce nonparametric Bayesian estimator in the context of record statistics values from the exponentiated inverse Weibull distribution (EIWD). In stead of Soland's conjugate piror, stick-breaking prior is considered and the corresponding Bayesian estimators under the squared error loss function (quadratic loss) and LINEX loss function are obtained and compared with other estimators. The results may be of interest especially when only record values are stored.

Introduction to the Indian Buffet Process: Theory and Applications (인도부페 프로세스의 소개: 이론과 응용)

  • Lee, Youngseon;Lee, Kyoungjae;Lee, Kwangmin;Lee, Jaeyong;Seo, Jinwook
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.251-267
    • /
    • 2015
  • The Indian Buffet Process is a stochastic process on equivalence classes of binary matrices having finite rows and infinite columns. The Indian Buffet Process can be imposed as the prior distribution on the binary matrix in an infinite feature model. We describe the derivation of the Indian buffet process from a finite feature model, and briefly explain the relation between the Indian buffet process and the beta process. Using a Gaussian linear model, we describe three algorithms: Gibbs sampling algorithm, Stick-breaking algorithm and variational method, with application for finding features in image data. We also illustrate the use of the Indian Buffet Process in various type of analysis such as dyadic data analysis, network data analysis and independent component analysis.