• 제목/요약/키워드: stern

검색결과 509건 처리시간 0.029초

Uncertainty reaction force model of ship stern bearing based on random theory and improved transition matrix method

  • Zhang, Sheng dong;Liu, Zheng lin
    • Ocean Systems Engineering
    • /
    • 제6권2호
    • /
    • pp.191-201
    • /
    • 2016
  • Stern bearing is a key component of marine propulsion plant. Its environment is diverse, working condition changeable, and condition severe, so that stern bearing load is of strong time variability, which directly affects the safety and reliability of the system and the normal navigation of ships. In this paper, three affecting factors of the stern bearing load such as hull deformation, propeller hydrodynamic vertical force and bearing wear are calculated and characterized by random theory. The uncertainty mathematical model of stern bearing load is established to research the relationships between factors and uncertainty load of stern bearing. The validity of calculation mathematical model and results is verified by examples and experiment yet. Therefore, the research on the uncertainty load of stern bearing has important theoretical significance and engineering practical value.

Reaction force of ship stern bearing in hull large deformation based on stochastic theory

  • Zhang, Sheng-dong;Long, Zhi-lin;Yang, Xiu-ying
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.723-732
    • /
    • 2020
  • A theoretical calculation model for ship stern bearings with large hull deformation is established and validated theoretically and experimentally. A hull simulation model is established to calculate hull deformations corresponding to the reaction force of stern bearings under multi-factor and multi-operating conditions. The results show that in the condition of wave load, hull deformation shows randomness; the aft stern tube bearing load obeys the Gaussian distribution and its value increases significantly compared with the load under static, and the probability of aft stern tube bearing load greater than 1 is 65.7%. The influence laws and levels between hull deformation and bearing reaction force are revealed, and suggestions for ship stern bearing specifications are proffered accordingly.

쌍축 LNG 운반선에 대한 선미관 유닛 적용 가능성 연구 (A Feasibility Study on the Application of Stern Tube Unit for the Twin Skeg LNG Carrier)

  • 신상훈;성영재;박정용;한범우
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.282-289
    • /
    • 2016
  • Traditional construction method of the stern tube is difficult to control the process and needs excessive working hours. Recently in order to resolve these issues, stern tube unit has been installed for some commercial vessels. The stern tube unit is a monolithic structure of bush and related components. The purpose of this study is to carry out a feasibility study for application of the stern tube unit for a 174K twin skeg LNG carrier. In this study, a 19,000 TEU container carrier installing the stern tube unit has been selected to compare with the deformations of stern for a 174K twin skeg LNG carrier.

Effect of flap angle on transom stern flow of a High speed displacement Surface combatant

  • Hemanth Kumar, Y.;Vijayakumar, R.
    • Ocean Systems Engineering
    • /
    • 제10권1호
    • /
    • pp.1-23
    • /
    • 2020
  • Hydrodynamic Drag of Surface combatants pose significant challenges with regard to fuel efficiency and exhaust emissions. Stern flaps have been used widely as an energy saving device, particularly by the US Navy (Hemanth et al. 2018a, Hemanth Kumar and Vijayakumar 2018b). In the present investigation the effect of flap turning angle on drag reduction is numerically and experimentally studied for a high-speed displacement surface combatant fitted with a stern flap in the Froude number range of 0.17-0.48. Parametric investigations are undertaken for constant chord length & span and varying turning angles of 5° 10° & 15°. Experimental resistance values in towing tank tests were validated with CFD. Investigations revealed that pressure increased as the flow velocity decreased with an increase in flap turning angle which was due to the centrifugal action of the flow caused by the induced concave curvature under the flap. There was no significant change in stern wave height but there was a gradual increase in the stern wave steepness with flap angle. Effective length of the vessel increased by lengthening of transom hollow. In low Froude number regime, flow was not influenced by flap curvature effects and pressure recovery was marginal. In the intermediate and high Froude number regimes pressure recovery increased with the flap turning angle and flow velocity.

선미벌브를 갖는 선박의 조종특성에 관한 연구 (Study on the Manoeuvring Characteristics of a Ship with Stern Bulb)

  • 손경호;이경우
    • 대한조선학회논문집
    • /
    • 제31권3호
    • /
    • pp.65-79
    • /
    • 1994
  • 본 연구에서는 선미벌브의 채택이 유체력 특성 및 조종성능에 미치는 영향에 관해서 실험적으로 고찰하였다. 연구방법으로서는 일반선미 형상과 선미벌브 형상을 가지는 각각의 모형선을 공시선으로, 회류수조에서 조종성 관련 구속모형시험을 실시하여 양 선형의 차이에 기인하는 유체력 특성과 조종성능을 비교, 검토하였다. 연구 결과, 선미벌브를 채택함으로써 침로안정성은 나빠지지만 선회력이 향상됨을 확인하였고, 이러한 조종성능의 특성과 유체력 특성과의 상관관계를 규명하였다.

  • PDF

Numerical investigation of the effect of the location of stern planes on submarine wake flow

  • Beigi, Shokrallah M.;Shateri, Alireza;Manshadi, Mojtaba D.
    • Ocean Systems Engineering
    • /
    • 제10권3호
    • /
    • pp.289-316
    • /
    • 2020
  • In the present paper, the effect of the location of stern planes on the flow entering the submarine propeller is studied numerically. These planes are mounted on three longitudinal positions on the submarine stern. The results are presented considering the flow field characteristics such as non-dimensional pressure coefficient, effective drag and lift forces on the stern plane, and the wake flow formed at the rear of the submarine where the propeller is located. In the present study, the submarine is studied at fully immersed condition without considering the free surface effects. The numerical results are verified with the experimental data. It is concluded that as the number of planes installed at the end of the stern section along the submarine model increases, the average velocity, width of the wake flow and its turbulence intensity formed at the end of the submarine enhance. This leads to a reduction in the non-uniformity of the inlet flow to the propulsion system.

컨테이너 운반선의 선미부가물에 의한 속도성능 향상에 대한 연구 (A Study on the Speed Effects of Afterbody Appendage for the Container Carrier)

  • 임채성;박동우
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2007년도 특별논문집
    • /
    • pp.32-42
    • /
    • 2007
  • Container vessels are required to have a large KMT to load many containers which requires a wide transom stern form. The wide transom stern generates large stern waves particularly at the scantling draft. This means that reducing the stern wave leads to resistance reduction. Numerical analyses and Model tests for duck-tail of the stern part have been performed to reduce the resistance of the container vessel having the wide transom on the scantling draft and optimize the form of duck-tail with the change of the design parameter i.e. length and edge height. The optimized duck-tail increases the speed by 0.8 % at scantling draft.

  • PDF

트랜섬 선미 후방의 점성 유동장 Topology 관찰 (Topological View of Viscous Flow behind Transom Stern)

  • 김우전;박일룡
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.322-329
    • /
    • 2005
  • Viscous flows behind transom stern are analyzed based on CFD simulation results. Stern wave pattern is often complicated due to the abrupt change of stern surface curvature and flow separation at transom. When a ship advances at high speed, whole transom stern is exposed out of water, resulting in the so-called 'dry transom'. However, in the moderate speed regime, stern wave development in conjunction of flow separation makes unstable wavy surface partially covering transom surface, i.e., the so-called 'wetted transom'. Transom wave formation is usually affecting the resistance characteristics of a ship, since the pressure contribution on transom surface as well as the wave-making resistance is changed. Flow modeling for 'wetted transom' is difficult, while the 'dry transom modeling' is often applied for the high-speed vessels. In the present study CFD results from the RANS equation solver using a finite volume method with level-set treatment are utilized to assess the topology of transom flow pattern for a destroyer model (DTMB5415) and a container ship (KCS). It is found that transom flow patterns are quite different for the two ships, in conformity to the shape of submerged transom. Furthermore, the existence of free surface seems to after the flow topology in case of KCS.

선미 형상을 반영한 조종 유체력 미계수 추정에 관한 연구 (A Study on the Maneuvering Hydrodynamic Derivatives Estimation Applied the Stern Shape of a Vessel)

  • 윤승배;김동영;김상현
    • 대한조선학회논문집
    • /
    • 제53권1호
    • /
    • pp.76-83
    • /
    • 2016
  • The various model tests are carried out to estimate and verify a ship performance in the design stage. But in view of the cost, the model test should be applied to every project vessel is very inefficient. Therefore, other methods of predicting the maneuverability with confined data are required at the initial design stage. The purpose of this study is to estimate the hydrodynamic derivatives by using the multiple regression analysis and PMM test data. The characteristics of the stern shape which has an important effect on the maneuverability are applied to the regression analysis in this study. The correlation analysis is performed to select the proper hull form coefficients and stern shape factors used as the variables in the regression analysis. The comparative analysis of estimate results and model test results is conducted on two ships to investigate the effectiveness of the maneuvering hydrodynamic derivatives estimation applied the stern shape. Through the present study, it is verified that the estimation using the stern shape factors as the variables are valid when the stern shape factors are located in the center of the database.

Experimental investigation on stern-boat deployment system and operability for Korean coast guard ship

  • Chun, Ho Hwan;Kim, Moon Chan;Lee, Inwon;Kim, Kookhyun;Lee, Jung Kwan;Jung, Kwang Hyo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.488-503
    • /
    • 2012
  • The stern boat deployment system was investigated to evaluate the capability of launching and recovering rigid hull inflatable boat (RHIB) via the stern ramp. The main parameters to launch and recover RHIB were tested at the design stage. The combined hydrodynamic effect of the stern wake and the water jet flow made it difficult to maintain the maneuvering and sea-keeping ability of RHIB approaching to the stern ramp. The safe recovery course was proposed to maintain the directional control of RHIB and to reduce the combined hydrodynamic effect in the transom zone. To evaluate the feasibility of RHIB recovery, the stern sill depth was measured in various conditions and the ramp availability time was obtained. Also, the experimental percent time operability (PTO) test was performed by the number of successive launching and recovering operations.