• Title/Summary/Keyword: stereo image sensor

Search Result 119, Processing Time 0.026 seconds

Realization for Moving Object Tracking System in Two Dimensional Plane using Stereo Line CCD

  • Kim, Young-Bin;Ryu, Kwang-Ryol;Sun, Min-Gui;Sclabassi, Robert
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.157-160
    • /
    • 2008
  • A realization for moving object detecting and tracking system in two dimensional plane using stereo line CCDs and lighting source is presented in this paper. Instead of processing camera images directly, two line CCD sensor and input line image is used to measure two dimensional distance by comparing the brightness on line CCDs. The algorithms are used the moving object tracking and coordinate converting method. To ensure the effective detection of moving path, a detection algorithm to evaluate the reliability of each measured distance is developed. The realized system results are that the performance of moving object recognizing shows 5mm resolution and mean error is 1.89%, and enables to track a moving path of object per 100ms period.

  • PDF

Following Control of Wheeled Mobile Robot Using Stereo Vision Sensor (Stereo Vision을 이용한 Wheeled Mobile Robot의 선행물체 추종제어)

  • Yoon, Jae-Sang;Choi, Kyung-Jin;Moon, Jeng-Woo;Park, Chong-Kug
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.173-177
    • /
    • 2002
  • This paper describes the algorithm for WMR (Wheeled Mobile Robot) to follow the preceding object using stereo vision. The center point of object existing in each image is calculate. From the distance and variation of two center points, we calculates the distance from WMR to preceding object and the relative velocity of WMR. And we use the Lyapunov theory to design controller.

  • PDF

3D Environment Perception using Stereo Infrared Light Sources and a Camera (스테레오 적외선 조명 및 단일카메라를 이용한 3차원 환경인지)

  • Lee, Soo-Yong;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.519-524
    • /
    • 2009
  • This paper describes a new sensor system for 3D environment perception using stereo structured infrared light sources and a camera. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners and infrared scanners cover $180^{\circ}$ and are accurate but too expensive. Those sensors use rotating light beams so that the range measurements are constrained on a plane. 3D measurements are much more useful in many ways for obstacle detection, map building and localization. Stereo vision is very common way of getting the depth information of 3D environment. However, it requires that the correspondence should be clearly identified and it also heavily depends on the light condition of the environment. Instead of using stereo camera, monocular camera and two projected infrared light sources are used in order to reduce the effects of the ambient light while getting 3D depth map. Modeling of the projected light pattern enabled precise estimation of the range. Two successive captures of the image with left and right infrared light projection provide several benefits, which include wider area of depth measurement, higher spatial resolution and the visibility perception.

Performance Evaluation of KOMPSAT-3 Satellite DSM in Overseas Testbed Area (해외 테스트베드 지역 아리랑 위성 3호 DSM 성능평가)

  • Oh, Kwan-Young;Hwang, Jeong-In;Yoo, Woo-Sun;Lee, Kwang-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1615-1627
    • /
    • 2020
  • The purpose of this study is to compare and analyze the performance of KOMPSAT-3 Digital Surface Model (DSM) made in overseas testbed area. To that end, we collected the KOMPSAT-3 in-track stereo image taken in San Francisco, the U.S. The stereo geometry elements (B/H, converse angle, etc.) of the stereo image taken were all found to be in the stable range. By applying precise sensor modeling using Ground Control Point (GCP) and DSM automatic generation technique, DSM with 1 m resolution was produced. Reference materials for evaluation and calibration are ground points with accuracy within 0.01 m from Compass Data Inc., 1 m resolution Elevation 1-DSM produced by Airbus. The precision sensor modeling accuracy of KOMPSAT-3 was within 0.5 m (RMSE) in horizontal and vertical directions. When the difference map was written between the generated DSM and the reference DSM, the mean and standard deviation were 0.61 m and 5.25 m respectively, but in some areas, they showed a large difference of more than 100 m. These areas appeared mainly in closed areas where high-rise buildings were concentrated. If KOMPSAT-3 tri-stereo images are used and various post-processing techniques are developed, it will be possible to produce DSM with more improved quality.

A High Speed Vision Algorithms for Axial Motion Sensor

  • Mousset, Stephane;Miche, Pierre;Bensrhair, Abdelaziz;Lee, Sang-Goog
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.394-400
    • /
    • 1998
  • In this paper, we present a robust and fast method that enables real-time computing of axial motion component of different points of a scene from a stereo images sequence. The aim of our method is to establish axial motion maps by computing a range of disparity maps. We propose a solution in two steps. In the first step we estimate motion with a low level computing for an image point by a detection estimation-structure. In the second step, we use the neighbourhood information of the image point with morphology operation. The motion maps are established with a constant computation time without spatio-temporal matching.

  • PDF

Relative RPCs Bias-compensation for Satellite Stereo Images Processing (고해상도 입체 위성영상 처리를 위한 무기준점 기반 상호표정)

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.287-293
    • /
    • 2018
  • It is prerequisite to generate epipolar resampled images by reducing the y-parallax for accurate and efficient processing of satellite stereo images. Minimizing y-parallax requires the accurate sensor modeling that is carried out with ground control points. However, the approach is not feasible over inaccessible areas where control points cannot be easily acquired. For the case, a relative orientation can be utilized only with conjugate points, but its accuracy for satellite sensor should be studied because the sensor has different geometry compared to well-known frame type cameras. Therefore, we carried out the bias-compensation of RPCs (Rational Polynomial Coefficients) without any ground control points to study its precision and effects on the y-parallax in epipolar resampled images. The conjugate points were generated with stereo image matching with outlier removals. RPCs compensation was performed based on the affine and polynomial models. We analyzed the reprojection error of the compensated RPCs and the y-parallax in the resampled images. Experimental result showed one-pixel level of y-parallax for Kompsat-3 stereo data.

An Accurate Moving Distance Measurement Using the Rear-View Images in Parking Assistant Systems (후방영상 기반 주차 보조 시스템에서 정밀 이동거리 추출 기법)

  • Kim, Ho-Young;Lee, Seong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1271-1280
    • /
    • 2012
  • In the recent parking assistant systems, finding out the distance to the object behind a car is often performed by the range sensors such as ultrasonic sensors, radars. However, the installation of additional sensors on the used vehicle could be difficult and require extra cost. On the other hand, the motion stereo technique that extracts distance information using only an image sensor was also proposed. However, In the stereo rectification step, the motion stereo requires good features and exacts matching result. In this paper, we propose a fast algorithm that extracts the accurate distance information for the parallel parking situation using the consecutive images that is acquired by a rear-view camera. The proposed algorithm uses the quadrangle transform of the image, the horizontal line integral projection, and the blocking-based correlation measurement. In the experiment with the magna parallel test sequence, the result shows that the line-accurate distance measurement with the image sequence from the rear-view camera is possible.

DSM Generation and Accuracy Comparison Using Stereo Matching Based on Image Segmentation (영상 분할 기반의 스테레오 매칭 기법을 이용한 DSM 생성 및 정확도 비교)

  • Kwon, Wonsuk
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.401-413
    • /
    • 2019
  • The purpose of this study is to generate DSM using the stereo matching algorithm of worldview-1 stereo images and verify the accuracy of the generated DSM. To generate DSM, RPC block modeling was performed to correct RPC errors, and image matching was performed using SGM, which is a stereo matching algorithm after the epipolar image was generated. The COST for SGM was calculated by using CENSUS, and 4-paths and 8-paths were applied for COST aggregation in SGM. To verify the quality and accuracy of the generated DSM, it was compared with the LiDAR-derived DSM and the DSM generated by commercial SW. The results showed that the vertical accuracy of the generated DSM using 4-paths of COST aggregation was 1.647 m to 3.689 m (RMSE). In case of using 8-paths of COST aggregation was 1.550 m to 3.106 m (RMSE).

A Study on Depth Information Acquisition Improved by Gradual Pixel Bundling Method at TOF Image Sensor

  • Kwon, Soon Chul;Chae, Ho Byung;Lee, Sung Jin;Son, Kwang Chul;Lee, Seung Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.15-19
    • /
    • 2015
  • The depth information of an image is used in a variety of applications including 2D/3D conversion, multi-view extraction, modeling, depth keying, etc. There are various methods to acquire depth information, such as the method to use a stereo camera, the method to use the depth camera of flight time (TOF) method, the method to use 3D modeling software, the method to use 3D scanner and the method to use a structured light just like Microsoft's Kinect. In particular, the depth camera of TOF method measures the distance using infrared light, whereas TOF sensor depends on the sensitivity of optical light of an image sensor (CCD/CMOS). Thus, it is mandatory for the existing image sensors to get an infrared light image by bundling several pixels; these requirements generate a phenomenon to reduce the resolution of an image. This thesis proposed a measure to acquire a high-resolution image through gradual area movement while acquiring a low-resolution image through pixel bundling method. From this measure, one can obtain an effect of acquiring image information in which illumination intensity (lux) and resolution were improved without increasing the performance of an image sensor since the image resolution is not improved as resolving a low-illumination intensity (lux) in accordance with the gradual pixel bundling algorithm.

Real-time 3D Converting System using Stereoscopic Video (스테레오 비디오를 이용한 실시간 3차원 입체 변환 시스템)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.813-819
    • /
    • 2008
  • In this paper, we implemented a real-time system which displays 3-dimensional (3D) stereoscopic image with stereo camera. The system consists of a set of stereo camera, FPGA board, and 3D stereoscopic LCD. Two CMOS image sensor were used for the stereo camera. FPGA which processes video data was designed with Verilog-HDL, and it can accommodate various resolutional videos. The stereoscopic image is configured by two methods which are side-by-side and up-down image configuration. After the left and right images are converted to the type for the stereoscopic display, they are stored into SDRAM. When the next frame is inputted into FPGA from two CMOS image sensors, the previous video data is output to the DA converter for displaying it. From this pipeline operation, the real-time operation is possible. After the proposed system was implemented into hardware, we verified that it operated exactly.