• Title/Summary/Keyword: stereo image

Search Result 1,065, Processing Time 0.027 seconds

Stereo-To-Multiview Conversion System Using FPGA and GPU Device (FPGA와 GPU를 이용한 스테레오/다시점 변환 시스템)

  • Shin, Hong-Chang;Lee, Jinwhan;Lee, Gwangsoon;Hur, Namho
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.616-626
    • /
    • 2014
  • In this paper, we introduce a real-time stereo-to-multiview conversion system using FPGA and GPU. The system is based on two different devices so that it consists of two major blocks. The first block is a disparity estimation block that is implemented on FPGA. In this block, each disparity map of stereoscopic video is estimated by DP(dynamic programming)-based stereo matching. And then the estimated disparity maps are refined by post-processing. The refined disparity map is transferred to the GPU device through USB 3.0 and PCI-express interfaces. Stereoscopic video is also transferred to the GPU device. These data are used to render arbitrary number of virtual views in next block. In the second block, disparity-based view interpolation is performed to generate virtual multi-view video. As a final step, all generated views have to be re-arranged into a single image at full resolution for presenting on the target autostereoscopic 3D display. All these steps of the second block are performed in parallel on the GPU device.

3D Accuracy Analysis of Mobile Phone-based Stereo Images (모바일폰 기반 스테레오 영상에서 산출된 3차원 정보의 정확도 분석)

  • Ahn, Heeran;Kim, Jae-In;Kim, Taejung
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.677-686
    • /
    • 2014
  • This paper analyzes the 3D accuracy of stereo images captured from a mobile phone. For 3D accuracy evaluation, we have compared the accuracy result according to the amount of the convergence angle. In order to calculate the 3D model space coordinate of control points, we perform inner orientation, distortion correction and image geometry estimation. And the quantitative 3D accuracy was evaluated by transforming the 3D model space coordinate into the 3D object space coordinate. The result showed that relatively precise 3D information is generated in more than $17^{\circ}$ convergence angle. Consequently, it is necessary to set up stereo model structure consisting adequate convergence angle as an measurement distance and a baseline distance for accurate 3D information generation. It is expected that the result would be used to stereoscopic 3D contents and 3D reconstruction from images captured by a mobile phone camera.

Multi-Depth Map Fusion Technique from Depth Camera and Multi-View Images (깊이정보 카메라 및 다시점 영상으로부터의 다중깊이맵 융합기법)

  • 엄기문;안충현;이수인;김강연;이관행
    • Journal of Broadcast Engineering
    • /
    • v.9 no.3
    • /
    • pp.185-195
    • /
    • 2004
  • This paper presents a multi-depth map fusion method for the 3D scene reconstruction. It fuses depth maps obtained from the stereo matching technique and the depth camera. Traditional stereo matching techniques that estimate disparities between two images often produce inaccurate depth map because of occlusion and homogeneous area. Depth map obtained from the depth camera is globally accurate but noisy and provide a limited depth range. In order to get better depth estimates than these two conventional techniques, we propose a depth map fusion method that fuses the multi-depth maps from stereo matching and the depth camera. We first obtain two depth maps generated from the stereo matching of 3-view images. Moreover, a depth map is obtained from the depth camera for the center-view image. After preprocessing each depth map, we select a depth value for each pixel among them. Simulation results showed a few improvements in some background legions by proposed fusion technique.

Generation of DEM by Correcting Blockage Areas on ASTER Stereo Images (ASTER 스테레오 영상의 폐색영역 보정에 의한 DEM 생성)

  • Lee, Jin-Duk;Park, Jin-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.155-163
    • /
    • 2010
  • The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on-board the NASA's Terra spacecraft provides along-track digital stereo image data at 15m resolution with a base-height ratio 0.6. Automated stereocorrelation procedure was implemented using the ENVI 4.1 software to derive DEMs with $15m{\times}15m$ in 43km long and 50km wide area using the ASTER stereo images. The accuracy of DEMs was analyzed in comparison with those which were obtained from digital topographic maps of 1:25,000 scale. Results indicate that RMSE in elevation between ${\pm}7$ and ${\pm}20m$ could be achieved. Excluding cloud, water and building areas as the factors which make RMSE value exceeding 10m, the accuracy of DEMs showed RMSE of ${\pm}5.789m$. Therefore for the purpose of elevating accuracy of topographic information, we intended to detect the cloud areas and shadow areas by a landcover classification method, remove those areas on the ASTER DEM and then replace with those areas detached from the cartographic DEM by band math.

Object Detection and 3D Position Estimation based on Stereo Vision (스테레오 영상 기반의 객체 탐지 및 객체의 3차원 위치 추정)

  • Son, Haengseon;Lee, Seonyoung;Min, Kyoungwon;Seo, Seongjin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.318-324
    • /
    • 2017
  • We introduced a stereo camera on the aircraft to detect flight objects and to estimate the 3D position of them. The Saliency map algorithm based on PCT was proposed to detect a small object between clouds, and then we processed a stereo matching algorithm to find out the disparity between the left and right camera. In order to extract accurate disparity, cost aggregation region was used as a variable region to adapt to detection object. In this paper, we use the detection result as the cost aggregation region. In order to extract more precise disparity, sub-pixel interpolation is used to extract float type-disparity at sub-pixel level. We also proposed a method to estimate the spatial position of an object by using camera parameters. It is expected that it can be applied to image - based object detection and collision avoidance system of autonomous aircraft in the future.

Reliable State Estimation Method using Stereo Vision-Based Virtual Model Extended Kalman Filter (스테레오 비전 기반 가상 모델 확장형 칼만 필터를 이용한 안정된 상태 추정 방법)

  • Lim, Young-Chul;Lee, Chung-Hee;Lee, Jong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.21-29
    • /
    • 2011
  • This paper presents a method that estimates distance and velocity of an object with reliability regardless of maneuver status of the target in stereo vision system. A stereo vision system can calculate a distance with disparity from left and right images. However, the distance estimation error may occur due to quantization error of image pixel. A sub-pixel interpolation method minimizes the quantization error and estimates accurate disparity with real value. Extended Kalman filter (EKF) was used to minimize the error covariance and estimate the object's velocity. However, divergence problem occurs due to model uncertainty when a target maneuvers highly, which makes the estimation error increase. In this paper, we propose a virtual model extended Kalman filter (VMEKF) method that minimizes the processing time and provides reliable estimation ability regardless of maneuver status. Computer simulations and experimental results in real road environments demonstrate that the proposed method gives a reliable estimation performance and reduces processing time under various maneuver status while comparing other estimation filters.

Development of the Advanced SURF Algorithm for Efficient Matching of Stereo Image (스테레오 영상의 효율적 매칭을 위한 개선된 SURF 알고리즘 개발)

  • Youm, Min Kyo;Yoon, Hong Sik;Whang, Jin Sang;Lee, Dong Ha
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.11-17
    • /
    • 2013
  • Nowadays 3D models are used in diverse sectors. The 3D maps provide better reality than existing plane maps as well as diverse pieces of information that cannot be expected from the limited plane maps. A process proposed in this paper enables easy and quick production by replacing the expensive laser scanners for modeling by an improved digital camera stereo matching algorithm. The algorithm used in this study was a SURF algorithm contained in the OpenCV library. The unconformity points of the algorithm were eliminated using the homography conversion and epipolar lines. In addition, the improved algorithm was compared with the commercial program, and it showed a better performance than the commercial program. It is expected that the proposed method can contribute to the digital maps and 3D virtual reality because it enables easy and quick 3D modeling provided that the stereo matching conditions are met.

High-Performance Hardware Architecture for Stereo Matching (스테레오 정합을 위한 고성능 하드웨어 구조)

  • Seo, Young-Ho;Kim, Woo-Youl;Lee, Yoon-Hyuk;Koo, Ja-Myung;Kim, Bo-Ra;Kim, Yoon-Ju;An, Ho-Myung;Choi, Hyun-Jun;Kim, Dong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.635-637
    • /
    • 2013
  • This paper proposed a new hardware architecture for stereo matching in real time. We minimized the amount of calculation and the number of memory accesses through analyzing calculation of stereo matching. From this, we proposed a new stereo matching calculating cell and a new hardware architecture by expanding it in parallel, which concurrently calculates cost function for all pixels in a search range. After expanding it, we proposed a new hardware architecture to calculate cost function for 2-dimensional region. The implemented hardware can be operated with minimum 250Mhz clock frequence in FPGA environment, and has the performance of 813fps in case of the search range of 64 pixels and the image size of $640{\times}480$.

  • PDF

Temporal Stereo Matching Using Occlusion Handling (폐색 영역을 고려한 시간 축 스테레오 매칭)

  • Baek, Eu-Tteum;Ho, Yo-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.99-105
    • /
    • 2017
  • Generally, stereo matching methods are used to estimate depth information based on color and spatial similarity. However, most depth estimation methods suffer from the occlusion region because occlusion regions cause inaccurate depth information. Moreover, they do not consider the temporal dimension when estimating the disparity. In this paper, we propose a temporal stereo matching method, considering occlusion and disregarding inaccurate temporal depth information. First, we apply a global stereo matching algorithm to estimate the depth information, we segment the image to occlusion and non-occlusion regions. After occlusion detection, we fill the occluded region with a reasonable disparity value that are obtained from neighboring pixels of the current pixel. Then, we apply a temporal disparity estimation method using the reliable information. Experimental results show that our method detects more accurate occlusion regions, compared to a conventional method. The proposed method increases the temporal consistency of estimated disparity maps and outperforms per-frame methods in noisy images.

A Study on Large Scale Digital Mapping Using High Resolution Satellite Stereo Images (고해상도 위성영상을 이용한 대축척 수치지도 제작에 관한 연구)

  • Sung Chun Kyoung;Yun Hong Sic;Cho Jae Myoung;Cho Jung Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.277-284
    • /
    • 2004
  • The subject of this study is to apply experimentally In resolution stereo imagery of IKONOS to producing 1:50,000 scale maps for Munsan area in Paju, being near the Military Demarcation Line, is inaccessible for aerial photography. Ground control points were acquired from GPS surveying to perform geometric corrections on images. Digital maps were produced from IKONOS stereo imagery on the digital photographic workstation. From field investigation, RMS errors of the plane and vertical positions are estimated respectively at $\pm$1.706m and $\pm$1.231m, respectively. These plane and vertical accuracies are within the tolerance limits of those provided in the NGIS Digital Topographic Map Production Rules. Therefore this suggested method is recommended for producing the large scale digital maps of 'No flight' zone near the M.D.L.