[ $NO_2$ ] concentration characteristics of Busan metropolitan city was analysed by statistical method using hourly $NO_2$ concentration data$(1998\~2000)$ collected from air quality monitoring sites of the metropolitan city. 4 representative regions were selected among air quality monitoring sites of Ministry of environment. Concentration data of $NO_2$, 5 air pollutants, and data collected at AWS was used. Both Stepwise Multiple Regression model and ARIMA model for prediction of $NO_2$ concentrations were adopted, and then their results were compared with observed concentration. While ARIMA model was useful for the prediction of daily variation of the concentration, it was not satisfactory for the prediction of both rapid variation and seasonal variation of the concentration. Multiple Regression model was better estimated than ARIMA model for prediction of $NO_2$ concentration.
Journal of the Korea Academia-Industrial cooperation Society
/
v.12
no.11
/
pp.4764-4769
/
2011
This study intends to investigate the organizational commitment and Its related factors among medium hospital of nurses. The collected data were analyzed descriptive statistics, t-test, ANOVA, Scheffe's test, Pearson correlation coefficient and stepwise multiple regression using SPSS 19.0 Program. The score of level of organizational commitment was statistically significant difference according to working period, marital state, monthly income, personality, night-duty. The score of organizational commitment level correlated positively with job satisfaction and burnout. Stepwise multiple regression analysis for organizational commitment level revealed that the most powerful predictor was burnout, job satisfaction and night-duty explained 49.5% of the variance. Therefore, It suggested that goal of increasing nurses' organizational commitment in hospital should be helped them raise job satisfaction and decrease nurses' burnout and night duty.
Early predictions of crop yields call provide information to producers to take advantages of opportunities into market places, to assess national food security, and to provide early food shortage warning. The objectives of this study were to identify the most useful parameters for estimating yields and to compare two model selection methods for finding the 'best' model developed by multiple linear regression. This research was conducted in two 65ha corn/soybean rotation fields located in east central South Dakota. Data used to develop models were small temporal variability information (STVI: elevation, apparent electrical conductivity $(EC_a)$, slope), large temporal variability information (LTVI : inorganic N, Olsen P, soil moisture), and remote sensing information (green, red, and NIR bands and normalized difference vegetation index (NDVI), green normalized difference vegetation index (GDVI)). Second order Akaike's Information Criterion (AICc) and Stepwise multiple regression were used to develop the best-fitting equations in each system (information groups). The models with $\Delta_i\leq2$ were selected and 22 and 37 models were selected at Moody and Brookings, respectively. Based on the results, the most useful variables to estimate corn yield were different in each field. Elevation and $EC_a$ were consistently the most useful variables in both fields and most of the systems. Model selection was different in each field. Different number of variables were selected in different fields. These results might be contributed to different landscapes and management histories of the study fields. The most common variables selected by AICc and Stepwise were different. In validation, Stepwise was slightly better than AICc at Moody and at Brookings AICc was slightly better than Stepwise. Results suggest that the Alec approach can be used to identify the most useful information and select the 'best' yield models for production fields.
Purpose: The purpose of this study was to assess the importance and sensitivity to nursing interventions of four nursing sensitive nursing outcomes selected from the Nursing Outcomes Classification (NOC). Outcomes for this study were 'Knowledge: Diet', 'Knowledge: Disease Process', 'Knowledge: Energy Conservation', and 'Knowledge: Health Behaviors'. Method: Data were collected from 183 nurses working in 2 university hospitals. Fehring method was used to estimate outcome and indicators' content and sensitivity validity. Multiple and stepwise regression were used to evaluate relationships between each outcome and its indicators. Result: Results confirmed the importance and nursing sensitivity of outcomes and their indicators. Key indicators of each outcomes were found by multiple regression. 'Knowledge: Diet' was suggested for adding new indicators because the variance explained by indicators was relatively low. Not all of the indicators selected for stepwise regression model were rated for highly in Fehring method. The R² statistics of the stepwise regression models were between 18 and 63% in importance by selected indicators and between 34 and 68% in contribution by selected indicators. Conclusion: This study refined what outcomes and indicators will be useful in clinical practice. Further research will be required for the revision of outcome and indicators of NOC. However, this study refined what outcomes and indicators will be useful in clinical practice.
Objective: The aim of this study was to investigate the relationship between aiming patterns and scores in archery shooting. Method: Four (N = 4) elementary-level archers from middle school participated in this study. Aiming pattern was defined by averaged acceleration data measured from accelerometers attached on the body during the aiming phase in archery shooting. Stepwise multiple regression analysis was used to test whether a model incorporating aiming patterns from all nine accelerometers could predict the scores. In order to extract period of interest (POI) data from raw data, a Dynamic Time Warping (DTW)-based extraction method was presented. Results: Regression models for all four subjects are conducted with different significance levels and variables. The significance levels of the regression models are 0.12%, 1.61%, 0.55%, and 0.4% respectively; the $R^2$ of the regression models is 64.04%, 27.93%, 72.02%, and 45.62% respectively; and the maximum significance levels of parameters in the regression models are 1.26%, 4.58%, 5.1%, and 4.98% respectively. Conclusion: Our results indicated that the relationship between aiming patterns and scores was described by a regression model. Analysis of the significance levels, variables, and parameters of the regression model showed that our approach - regression analysis with DTW - is an effective way to raise scores in archery shooting.
Purposes: This study aims to identify factors affecting dental university hospitals' profitability and understand recent their business condition. Methodology: Data from 2016 to 2019 was collected from financial statement, public open data in 8 dental university hospitals. For the study, multiple regression test with stepwise selection was applied. Findings: First of all, 9 out of 19 independent variables were selected by stepwise selection. As a result of multiple regression test with selected independent variables and the dependent variable(operating profit margin ratio), the factors affecting hospitals' profitability were the number of dental unit chair, hospital location, debt ratio, total capital turnover ratio, employment cost rate, material cost rate, management expense rate, the number of patient per a dentist. Practical Implication: To improve dental university hospitals' profitability, hospitals specifically analysis and manage their cost such as employment, material and management cost and seek effectiveness by managing the proper number of patient per a dentist.
Quantile regression can estimate multiple conditional quantile functions of the response, and as a result, it provide comprehensive information of the relationship between the response and the predictors. However, when estimating several conditional quantile functions separately, two or more estimated quantile functions may cross or overlap and consequently violate the basic properties of quantiles. In this paper, we propose a new stepwise method to estimate multiple non-crossing quantile functions using constraints on the kernel coefficients. A simulation study are presented to demonstrate satisfactory performance of the proposed method.
전력수요는 다양한 외부요인으로부터 영향을 받으므로 전력수요 예측 시 각 요인과의 상관관계를 고려할 필요가 있다. 본 논문은 Stepwise 다중회귀분석법을 이용한 일일 최대전력수요 예측 방법을 제시하였다. 사례연구에서는 2014년 평일 전력수요데이터를 이용하여 제안된 예측방법을 적용하고 그 결과를 평가하였다.
Journal of Korean Institute of Industrial Engineers
/
v.42
no.5
/
pp.314-326
/
2016
The purpose of variable selection techniques is to select a subset of relevant variables for a particular learning algorithm in order to improve the accuracy of prediction model and improve the efficiency of the model. We conduct an empirical analysis to evaluate and compare seven well-known variable selection techniques for multiple linear regression model, which is one of the most commonly used regression model in practice. The variable selection techniques we apply are forward selection, backward elimination, stepwise selection, genetic algorithm (GA), ridge regression, lasso (Least Absolute Shrinkage and Selection Operator) and elastic net. Based on the experiment with 49 regression data sets, it is found that GA resulted in the lowest error rates while lasso most significantly reduces the number of variables. In terms of computational efficiency, forward/backward elimination and lasso requires less time than the other techniques.
This study aimed to examine the multiple factors to affect the health conservation in the middle aged women. The subjects were 143 middle aged women from 40 to 59 years old and the data collection period was from June 1 to 25, 2016. The data was analyzed by descriptive statistics, t-test, ANOVA, Pearson's correlation coefficients, and stepwise multiple regression. We found a significantly positive association between health conservation and health promotion behaviors among middle-aged women. However, menopausal symptoms and wisdom were not significantly associated with health conservation. Stepwise multiple regression analysis was performed to analyze the most correlation variables were health enhancement behaviors with 12.5% and existence of spouse with 3.2%. This study provides more ensured fundamental data for the health conservation and enhancement in the middle aged women.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.