• Title/Summary/Keyword: step-by-step learning

Search Result 682, Processing Time 0.032 seconds

투자대상 벤처기업의 선정을 위한 전문가시스템 개발

  • 김성근;김지혜
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.139-148
    • /
    • 1999
  • 오늘날 기술집약적인 벤처기업들에 대한 관심이 집중되고 있다. 소수의 진취적인 벤처기업들이 기술개발 및 신상품 개발 등 두드러진 활약을 보이고 있기 때문이다. 그러나 실제 이 벤처기업의 성공 가능성은 그렇게 높지 않다. 특히 벤처기업 환경이 아직 미약한 국내의 경우 위험부담이 훨씬 더 크다. 이러한 벤처기업 환경에서 투자대상 벤처기업을 선정하는 것은 매우 전략적인 의사결정이다. 일반적으로 일반 벤처투자가들은 관심이 있는 산업에 해당하는 기업의 사업계획서와 기초적인 관련 정보를 토대로 투자여부를 결정한다. 그렇지만 실제로는 이와 같은 분석에 필수적으로 요구되는 정보가 불확실할 뿐만 아니라 기술분야에 대한 전문적 지식도 부족하기 때문에 투자 여부를 결정하는 것은 매우 복잡하고 어려운 문제이다. 그러므로 투자대상 벤처기업의 선정을 효과적으로 지원해주는 체계적인 접근이 필요하다. 특히 벤처 사업과 관련된 기술 동향 및 수준 등에 관련된 전문 지식과 경험이 체계적으로 제공되어야 하고 또한 벤처 투자가의 개인적 경험과 판단이 평가 프로세스에 직접적으로 반영될 수 있어야 한다. 이에 본 연구에서는 전문가의 지식과 경험을 체계화하고 투자가의 개인적 판단을 효과적으로 수용할 수 있는 전문가시스템의 접근방법을 제시하고자 한다. 투자대상 벤처기업의 선정을 위한 전문가시스템을 구축하기 위해 본 연구에서는 다양한 정보수집 과정을 거쳤다. 우선 벤처 투자와 관련된 기존 문헌을 심층 분석하였으며 아울러 벤처 투자 업계에서 활약중인 전문 벤처캐피탈리스트들과의 수차례 인터뷰를 통해 벤처기업 평가의 주요 요인과 의사결정 과정을 파악할 수 있었다. 이러한 과정을 통하여 본 연구에서는 벤처 투자의 90%를 차지하는 정보통신분야에 속한 기법 중에서 투자대상 벤처기업의 선정을 위한 전문가시스템을 구축중이다.의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and in

  • PDF

인터넷을 이용한 육상물류중개시스템 개발에 관한 연구

  • 박남규;최형림;송근곤;박영재;손형수
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.335-345
    • /
    • 1999
  • 오늘날 날로 증가하는 물류비는 개별 기업은 물론 국가 전체의 수출 경쟁력을 약화시키는 주요 원인으로 지적되고 있다. 그러나 그동안 우리나라에서는 물류비 절감을 위한 종합적이고 체계적인 대책이 이루어지지 못하였다. 특히 본 논문의 연구대상인 육상물류의 경우 그 비중이 전체 화물 운송의 60% 이상을 차지함에도 불구하고 심각한 교통체증 및 물류기반 시설의 미비 등으로 인하여 물류비가 계속 증가하는 양상을 보여 왔다. 따라서 본 논문에서는 우리나라 육상물류시스템이 안고 있는 문제점의 해결을 위한 방안들 중의 하나로 정보기술의 활용에 관한 내용을 다루고 있다. 즉 영세한 기업들도 누구나 손쉽게 이용할 수 있도록 인터넷을 이용한 육상물류중개시스템의 개발에 관한 내용을 소개하고 있다. 육상물류중개시스템은 복합화물주선업체인 (주) 대형물류와 함께 개발한 시스템으로 인터넷을 통하여 화주의 화물 운송의뢰를 접수받아 이를 여러 운송업체에게 제공해 주는 역할을 수행하게 된다. 특히 육상물류중개시스템은 화물의 운송과 관련하여 발생하는 다양한 정보들을 데이터베이스에 저장하여 두었다가 세관을 비롯한 터미널에 대한 각종 신고업무에 이용할 수 있으며, 이밖에도 교통정보 및 화물 위치정보 등 다양한 서비스를 제공해 줄 수 있다. 따라서 운송업체의 공차율을 줄이고 화주에게는 자신의 화물에 대한 정보를 실 시간으로 전달해 줄 수 있다는 장점이 있다. 또한 이러한 육상물류중개시스템은 현재 개발중인 통합데이터베이스를 기반으로한 항만물류원스톱서비스 시스템과 연계되어 차후에는 물류원스톱시스템으로 발전할 수 있을 것이다.용되어져 왔다. 그러나 MCRDR 이론이 적용된 전문가시스템들의 경우 MCRDR이론을 기본으로한 개발 툴로서 개발된 시스템들이 아니고 해당분야에서 MCRDR이론을 적용한 엔진을 직접 설계 구현하여 온 것이 사실이다. KEE(Knowledge Engineer for Experts) 시스템은 최근 개발된 MCRDR기반 전문가시스템 개발 툴로서 본 논문에서는 이러한 분야별 전문가시스템 개발을 지양하고 MCRDR 이론을 기반으로 한 범용성 있는 전문가시스템 개발 툴의 개발에 관한 연구를 소개한다.-based Data Mining Architecture를 제시하였다. 본 연구의 의의로는 데이터 마이닝을 통한 귀납적 지식생성에 있어 귀납적 오류의 발생을 도메인 지식을 통해 설명가능 함을 보임으로 검증하고 아울러 이러한 설명을 통해 연역적으로 새로운 가설지식을 생성시켜 이를 가설검증방식으로 검증함으로써 귀납적 접근과 연역적 접근의 통합 데이터 마이닝 접근을 제시하였다는데 있다.osed algorithm are faster and lower than the existing LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which

  • PDF

Principles and Current Trends of Neural Decoding (뉴럴 디코딩의 원리와 최신 연구 동향 소개)

  • Kim, Kwangsoo;Ahn, Jungryul;Cha, Seongkwang;Koo, Kyo-in;Goo, Yong Sook
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.342-351
    • /
    • 2017
  • The neural decoding is a procedure that uses spike trains fired by neurons to estimate features of original stimulus. This is a fundamental step for understanding how neurons talk each other and, ultimately, how brains manage information. In this paper, the strategies of neural decoding are classified into three methodologies: rate decoding, temporal decoding, and population decoding, which are explained. Rate decoding is the firstly used and simplest decoding method in which the stimulus is reconstructed from the numbers of the spike at given time (e. g. spike rates). Since spike number is a discrete number, the spike rate itself is often not continuous and quantized, therefore if the stimulus is not static and simple, rate decoding may not provide good estimation for stimulus. Temporal decoding is the decoding method in which stimulus is reconstructed from the timing information when the spike fires. It can be useful even for rapidly changing stimulus, and our sensory system is believed to have temporal rather than rate decoding strategy. Since the use of large numbers of neurons is one of the operating principles of most nervous systems, population decoding has advantages such as reduction of uncertainty due to neuronal variability and the ability to represent a stimulus attributes simultaneously. Here, in this paper, three different decoding methods are introduced, how the information theory can be used in the neural decoding area is also given, and at the last machinelearning based algorithms for neural decoding are introduced.

Web Cogmulator : The Web Design Simulator Using Fuzzy Cognitive Map (Web Cogmulator : 퍼지 인식도를 이용한 웹 디자인 시뮬레이터에 관한 연구)

  • 이건창;정남호;조형래
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.357-364
    • /
    • 2000
  • 기존의 웹 디자인은 웹이라는 매체의 특성 상 디자인적인 요소가 매우 중요함에도 불구하고 디자인은 위한 구체적인 방법론이 미약하다. 특히, 많은 소비자들을 유인하고 구매를 촉발시켜야 하는 인터넷 쇼핑몰의 경우에는 더욱 더 그럼하에도 불구하고 이를 위한 전략적인 방법론이 부족하다. 즉, 기존 연구들은 제품의 다양성, 서비스, 촉진, 항해량, 편리성, 사용자 인터페이스 등이 중요하다고 하였지만 실제 인터넷 쇼핑몰을 디자인하는 입장에서는 활용하기가 상당히 애매하다. 그 이유는 이들 요인들은 서로 영향관계를 가지고 있어서 사용자 인터페이스가 복잡하면 항해량이 늘어나 편리성이 감소하고, 제품이 늘어나더라도 검색엔진을 사용하면 상대적으로 항해량이 감소하게 되어 편리성이 증가한다. 따라서, 이들 요인을 활용하여 인터넷 쇼핑몰을 구축하려면 요인간의 영향관계를 면밀히 파악하고 이 영향요인이 소비자의 구매행동에 어떠한 영향을 주는지가 충분히 검토되어야 한다.이에 본 연구에서는 퍼지인식도를 이용하여 인터넷 쇼핑몰 상에서 소비자의 구매행동에 영향을 주는 요인을 추출하고 이들 요인간의 인과관계를 도출하여 보다 구체적이고 전략적으로 인터넷 쇼핑몰을 디자인할 수 있는 방법으로 web-Cogmulator를 제시한다. Web-Cogmulator는 소비자의 쇼핑몰에 대한 암묵지식 형태의 구매행동을 형태지식화하여 지식베이스 형태로 가지고 있기 때문에 인터넷 쇼핑몰의 다양한 요인의 변화에 따른 소비자의 구매행동을 추론 시뮬레이션하는 것이 가능하다. 이에 본 연구에서는 기본적인 인터넷 쇼핑몰 시나리오를 바탕으로 추론 시뮬레이션을 실시하여 Web-Cogmulator의 유용성을 검증하였다.를, 지지도(support), 신뢰도(confidence), 리프트(lift), 컨빅션(conviction)등의 관계를 통해 다양한 방법으로 모색해본다. 이 연구에서 제안하는 이러한 개념계층상의 흥미로운 부분의 탐색은, 전자 상거래에서의 CRM(Customer Relationship Management)나 틈새시장(niche market) 마케팅 등에 적용가능하리라 여겨진다.선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computati

  • PDF

Comparative Analysis of Opinions about Practicing Works among Farm, Consultant, and Consulting Company in Consulting Field of Fruits and Vegetables (과채류 컨설팅에 대한 농가, 컨설턴트 및 컨설팅업체 간 견해 비교 분석)

  • Kim, Ho-Cheol;Choi, Jun-Hyuk;Jung, Sek-Gi;Lee, Yong-Beom;Bae, Hyang-Jong
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.266-272
    • /
    • 2009
  • This study was conducted survey on fruit and vegetables farms (FM), consulting companies (CC), and the consultants (CT) to investigation actual conditions and improvements in consulting part of horticulture. In results of survey on FM, FM chose 'necessity' on consulting for learning of production skill and 'field visit' in means of consulting. FM had a low trust on experience and knowledge of CT and answered that FM had not enough time for consulting by reason of over-work of CT, chose 'necessity' on crop registration system. In results of common questions among FM, CC, and CT, same answer of questions were term of contract (answer: yearly contract), means of consulting (answer: visit), consulting time per a visit (answer: $2{\sim}3$hours). Different answer between supplier (CC, CT) and consumer of consulting were decision method of contract price (answer: provisional contract$\neq$contents and the quality of consulting), percentage of government subsidy (answer: propriety$\neq$step-up).

PDA Personalized Agent System (PDA용 개인화 에이전트 시스템)

  • 표석진;박영택
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.345-352
    • /
    • 2002
  • 무선 인터넷을 이용하는 사용자는 정보의 양의 따른 시간적 통신비용의 증가 문제로 개인화 에이전트가 사용자의 관심에 따라 서비스를 제공하는 기능과 맞춤화된 정보를 제공하는 기능, 지식 기반 방식으로 정보를 예측하는 기능을 가지기를 바라고 있다. 본 논문에서는 이와 같이 무선 인터넷을 사용하는 사용자를 위한 PDA 개인화 에이전트 시스템을 구축하고자 한다. PDA 개인화 에이전트 시스템 구축을 위해 프로파일 기반의 에이전트 엔진과 사용자 프로파일을 이용한 지식기반 방식을 사용한다. 사용자가 웹페이지에서 행하는 행위들을 모니터링하여 사용자가 관심 가지는 문서를 파악하고 정보 검색을 통해 얻어진 문서를 분석하여 사용자 각각의 관심 문서로 나누어 서비스하게 된다. 모니터링 되어진 문서를 효과적으로 분석하기 위해 unsupervised clustering 기계학습 방식인 Cobweb을 이용한다. unsupervised 기계 학습은 conceptual 방식을 이용하여 검색되어진 정보를 사용자의 관심 분야별로 clustering한다. 클러스터링을 통해 얻어진 결과를 다시 기계학습을 통해 사용자 관심문서에 대한 프로파일을 생성하게 된다. 이렇게 만들어진 프로파일을 룰(Rule)로 만들어 이를 기반으로 사용자에게 서비스하게 된다. 이러한 룰은 사용자의 모니터링 결과로 얻어지기 때문에 주기적으로 업데이트하게 된다. 제안하는 시스템은 인터넷신문이나 웹진 등에서 사용자들에게 뉴스를 전달하기 위한 목적으로 생성하는 뉴스문서를 특정 대상으로 선정하였고 사용자 정보를 이용한 검색을 실시하고 결과로 얻어진 정보를 정보 분류를 통해 PDA나 휴대폰을 통해 사용자에게 제공한다. 상품을 검색하기 위한 검색노력을 줄이고, 검색된 대안들로부터 구매자와 시스템이 웹상에서 서로 상호작용(interactivity) 하여 해를 찾고, 제약조건과 규칙들에 의해 적합한 해를 찾아가는 방법을 제시한다. 본 논문은 구성기반 예로서 컴퓨터 부품조립을 사용해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of compu

  • PDF

On the Development of Agent-Based Online Game Characters (에이전트 기반 지능형 게임 캐릭터 구현에 관한 연구)

  • 이재호;박인준
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.379-384
    • /
    • 2002
  • 개발적인 측면에서 온라인 게임 환경에서의 NPC(Non Playable Character)들은 환경인식능력, 이동능력, 특수 능력 및 아이템의 소유 배분 등을 원활히 하기 위한 능력들을 소유해야 하며, 게임 환경을 인식, 저장하기 위한 데이터구조와 자신만의 독특한 임무(mission)를 달성하기 위한 계획을 갖고 행위를 해야 한다. 이런 의미에서 NPC는 자신만의 고유한 규칙과 행동 패턴, 그리고 목표(Goal)와 이를 실행하기 위한 계획(plan)을 소유하는 에이전트로 인식되어야 할 것이다. 그러나, 기존 게임의 NPC 제어 구조나 구현 방법은 이러한 요구조건에 부합되지 못한 부분이 많았다. C/C++ 같은 컴퓨터 언어들을 이용한 구현은 NPC의 유연성이나, 행위에 많은 문제점이 있었다. 이들 언어의 switch 문법은 NPC의 몇몇 특정 상태를 묘사하고, 그에 대한 행위를 지정하는 방법으로 사용되었으나, 게임 환경이 복잡해지면서, 더욱더 방대한 코드를 만들어야 했고, 해석하는데 많은 어려움을 주었으며, 동일한 NPC에 다른 행동패턴을 적용시키기도 어려웠다. 또한, 대부분의 제어권을 게임 서버 폭에서 도맡아 함으로써, 서버측에 많은 과부하 요인이 되기도 하였다. 이러한 어려움을 제거하기 위해서 게임 스크립트를 사용하기도 하였지만, 그 또한 단순 반복적인 패턴에 사용되거나, 캐릭터의 속성적인 측면만을 기술 할 수 있을 뿐이었다 이러한 어려움을 해소하기 위해서는 NPC들의 작업에 필요한 지식의 계층적 분화를 해야 하고, 현재 상황과 목표 변화에 적합한 반응을 표현할 수 있는 스크립트의 개발이 필수 적이라 할 수 있다 또한 스크립트의 실행도 게임 서버 측이 아닌 클라이언트 측에서 수행됨으로써, 서버에 걸리는 많은 부하를 줄일 수 있어야 할 것이다. 본 논문에서는, 대표적인 반응형 에이전트 시스템인 UMPRS/JAM을 이용하여, 에이전트 기반의 게임 캐릭터 구현 방법론에 대해 알아본다.퓨터 부품조립을 사용해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and increase speed of convergence in avoidance burden of computational complexity in reality when it was experimented having

  • PDF

The Effects of Korean Ginseng on Memory Loss in a Rat Models (Scopolamine 유도 치매동물모델에서 고려인삼(백삼, 홍삼 및 흑삼)의 기억력 개선 효과)

  • Kang, Shin-Jyung;Woo, Jeong-Hwa;Kim, Ae-Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.8
    • /
    • pp.1190-1196
    • /
    • 2013
  • The purpose of this study was to investigate the mechanism and effects of different types of ginseng on memory improvement in an experimental rat model. In this study, SD rats were induced for memory deficits through scopolamine treatment (1 mg/kg, i.p.) then administrated with ginseng extract for 7 weeks. The rats were divided into five groups: saline (1 mL/kg, NC: negative control), white ginseng (300 mg/kg, WG), red ginseng (300 mg/kg, RG), black ginseng (300 mg/kg, BG), and scopolamine (1 mg/kg, PC: positive control). The step through latency of the BG and RG groups was significantly longer than the PC group in the retention trial of multiple trial passive avoidance test. In the spatial reference memory triads of the Morris water maze test, the latency time of BG and RG was significantly lower than the PC group. In addition, in the prove test, the time spent in the platform quadrant of BG and RG groups were significantly longer than the PC group. Brain choline acetyltransferase (ChAT) activities BG and RG groups significantly increased compared to other groups. On the other hand, the levels of malondialdehyde (MDA) were significantly lower in the BG and RG groups compared to other groups. These result suggested that black ginseng could be useful to enhance learning memory and cognitive function by regulation of cholinergic enzymes.

Performance Optimization Strategies for Fully Utilizing Apache Spark (아파치 스파크 활용 극대화를 위한 성능 최적화 기법)

  • Myung, Rohyoung;Yu, Heonchang;Choi, Sukyong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.1
    • /
    • pp.9-18
    • /
    • 2018
  • Enhancing performance of big data analytics in distributed environment has been issued because most of the big data related applications such as machine learning techniques and streaming services generally utilize distributed computing frameworks. Thus, optimizing performance of those applications at Spark has been actively researched. Since optimizing performance of the applications at distributed environment is challenging because it not only needs optimizing the applications themselves but also requires tuning of the distributed system configuration parameters. Although prior researches made a huge effort to improve execution performance, most of them only focused on one of three performance optimization aspect: application design, system tuning, hardware utilization. Thus, they couldn't handle an orchestration of those aspects. In this paper, we deeply analyze and model the application processing procedure of the Spark. Through the analyzed results, we propose performance optimization schemes for each step of the procedure: inner stage and outer stage. We also propose appropriate partitioning mechanism by analyzing relationship between partitioning parallelism and performance of the applications. We applied those three performance optimization schemes to WordCount, Pagerank, and Kmeans which are basic big data analytics and found nearly 50% performance improvement when all of those schemes are applied.

제안기반 자동 거래협상 시장에서의 사용자 에이전트를 위한 최적 거래안 탐색 전략의 개발

  • 홍준석;김우주;송용욱
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.05a
    • /
    • pp.140-148
    • /
    • 2002
  • 컴퓨터를 통해 편리한 생활을 추구해온 인간들은 전자상거래 분야에서도 이러한 욕구를 충족시키기 위해 자동협상이라는 기능을 요구하게 되었다. 지능형 에이전트를 이용한 자동협상은 인간의 거래협상 업무의 부담을 많은 부분을 덜어주고 있어 자동협상 에이전트에 관한 연구들이 활성화되고 있다 소비자간 전자상거래에서는 다수의 자동협상 에이전트 연구들이 경매시장에서의 자동협상에 초점을 맞추고 있는데 반해, 가격 이외의 여러 거래속성을 갖는 상품에 대한 제안기반 협상시장에서의 자동협상 에이전트에 관한 연구들이 최근에 활발히 이루어지고 있다. 본 연구에서는 소비자간 전자상거래에서 거래속성의 변화에 따라 개인의 효용가치의 차이를 이용한 다속성 상품의 제안기반 협상시장이 가져야할 특성에 대해 연구하고, 이를 기반으로 자동 거래협상을 수행에 필요한 거래속성 변화에 따른 소비자 개인의 선호체계를 표현하기 위한 방법을 개발하였다. 그리고 이러한 자동 거래협상을 공정하게 수행하기 위해 협상시장이 가져야할 특징과 프로토콜을 제안하고 시장운영 에이전트 시스템의 구조를 설계하였다. 마지막으로 이러한 분산형 시장구조를 갖는 제안기반의 협상시장에 참여하는 사용자 에이전트 시스템이 최적의 거래상대와 최적의 거래안을 찾기 위한 탐색방법을 구체적으로 개발하였다. 본 연구의 결과를 통하여 소비자간 전자상거래에서 구매자 뿐만 아니라 판매자도 협상결과에 따른 거래로 얻어지는 자신의 효용을 극대화할 수 있는 공정한 협상시장을 운영할 수 있을 뿐만 아니라 사용자들도 손쉽게 자신의 협상 선호체계를 쉽게 표현하고, 표현된 선호체계를 반영한 자동 거래협상을 수행할 수 있을 것 이다. 기존의 UN/EDIFACT표준을 사용하고 있는 EDI환경과 기존 VAN 방식의 EDI 중계 시스템과 연동되며, 향후 관세청의 XML/EDI 표준 시행을 미리 대비하는 선도연구로서 자리매김이 된다. 본 연구에서는 개발된 XML/EDI 통관시스템은 향후, 서비스의 최대 걸림돌이 되어왔던 값비싼 EDI 사용료의 부담에서 벗어날 수 있게 할 것이며, 저렴한 EDI구축/운영 비용으로 전자문서교환의 활성화와 XML이 인터넷 기반의 문서유통 표준으로 자리매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without

  • PDF